

Rugged Embedded Computer

8th Generation Intel[®] Core[™] Series Processors

High Performance, Expandable and Modular Rugged Embedded Computer

DS-1200 Series

Contents

Preface

Revision		04
Copyright	Notice	04
Acknowle	dgement	04
Disclaime	r	04
Declaratio	n of Conformity	05
	/arranty Statement	
Technical	Support and Assistance	07
	ns Used in this Manual	
Safety Pre	ecaution	08
	Contents	
•	nformation	
	Modules & Accessories	
opuona		. 0
Chapter 1	Product Introductions	
1.1	Overview	13
1.2	Highlights	
1.3	Product Pictures	
1.4	Key Features	
1.5	Hardware Specification	
1.6	System I/O	
1.0	1.6.1 Front	
	1.6.2 Rear	
1.7	Mechanical Dimension	
1.7	Wechanical Differision	. 19
Chapter 2	Pin Definitions and Settings	
2.1	Location of Connectors and Switches	22
	2.1.1 Top View	
	2.1.2 Bottom View	
2.2	Connector / Switch Definition	
2.3	Definition of Switches	
2.4	Definition of Connectors	
Chapter 3	System Setup	
3.1	Disassembling the System for Installation	
3.2	Installing the CPU	
3.3	Installing a Mini-PCle / mSATA Card on Top Side	42
3.4	Installing Antennas	44
3.5	Installing a SATA Hard Drive on Top Side	. 46
3.6	Installing a Mini-PCle / mSATA Card on Bottom Side	48
3.7	Installing a M.2 Card	
3.8	Installing SO-DIMM Memory	
3.9	Installing a PCI / PCIe Add-on Card	
	Assembling the System	
	Installing a SATA Hard Drive at Front Side	
	Installing SIM Card	
	Installing the CMOS Battery	
	Fasten the Cover	
	Wall Mount Brackets	
0.10		

Chapter 4 BIOS Setup

4.1	BIOS Introduction	73
4.2	Main Setup	74
4.3	Advanced Setup	
	4.3.1 CPU Configuration	75
	4.3.2 SATA Configuration	
	4.3.3 PCH-FW Configuration	
	4.3.4 Trusted Computing	79
	4.3.5 ACPI Setting	80
	4.3.6 F81866 Super IO Configuration	81
	4.3.7 Hardware Monitor	83
	4.3.8 S5 RTC Wake Settings	
	4.3.9 Serial Port Console Redirection	85
	4.3.10 USB Configuration	
	4.3.11 Network Stack Configuration	
	4.3.12 CSM Configuration	
	4.3.13 NVMe Configuration	
4.4	Chipset Setup	90
	4.4.1 System Agent (SA) Configuration	
	4.4.2 PCH-IO Configuration	
4.5	Security Setup	
4.6	Boot Setup	
4.7	Save & Exit	97
Chanter 5	Product Application	
· ·		
5.1	Digital I/O (DIO) Application	
	5.1.1 Digital I/O Programming Guide	
5.2	Digital I/O (DIO) Hardware Specification	
	5.2.1 Digital I/O (DIO) Connector Definitions	113
Chanter 6	Optional Module Pin Definitions and Settings	
Chapter 0		
6.1	CMI-COM Module Connector Definition and Settings	
6.2	CMI-M12 Module Connector Definition and Settings	
6.3	CFM-IGN Module Connector Definition and Settings	
6.4	Installing a Low Speed CMI Module	120
6.5	Installing a High Speed CMI Module	123
6.6	Installing a CFM-PoE Module	
6.7	Installing a CFM-IGN Power Ignition Module	132
6.8	Installing an External Fan	133
6.9	Installing an Internal Fan	135

Preface

Revision

Revision	Description	Date
1.0	First Release	2018/10/23

Copyright Notice

© 2016 by Cincoze Co., Ltd. All rights are reserved. No parts of this manual may be copied, modified, or reproduced in any form or by any means for commercial use without the prior written permission of Cincoze Co., Ltd. All information and specification provided in this manual are for reference only and remain subject to change without prior notice.

Acknowledgement

Cincoze is a registered trademark of Cincoze Co., Ltd. All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Disclaimer

This manual is intended to be used as a practical and informative guide only and is subject to change without notice. It does not represent a commitment on the part of Cincoze. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CE

The product(s) described in this manual complies with all application European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

E-Mark

The "E" mark is based on ECE regulations issued by the Economic Commission for Europe. It is an organizational part of the UN and the members are EU countries and many others. Therefore, the acceptance of approved components is much broader, especially in the eastern part of Europe. It is necessary to confirm whether a particular country has accepted (signed) the application of an ECE-regulation; as the application it is not mandatory for the countries.

CN-TB-OP22-44 V1.0

Product Warranty Statement

Warranty

Cincoze products are warranted by Cincoze Co., Ltd. to be free from defect in materials and workmanship for 2 years from the date of purchase by the original purchaser.

During the warranty period, we shall, at our option, either repair or replace any product that proves to be defective under normal operation.

Defects, malfunctions, or failures of the warranted product caused by damage resulting from natural disasters (such as by lightening, flood, earthquake, etc.), environmental and atmospheric disturbances, other external forces such as power line disturbances, plugging the board in under power, or incorrect cabling, and damage caused by misuse, abuse, and unauthorized alteration or repair, and the product in question is either software, or an expendable item (such as a fuse, battery, etc.), are not warranted.

RMA

Before sending your product in, you will need to fill in Cincoze RMA Request Form and obtain a RMA number from us. Our staff is available at any time to provide you with the most friendly and immediate service.

■ RMA Instruction

- Customers must fill in Cincoze Return Merchandise Authorization (RMA) Request Form and obtain a RMA number prior to returning a defective product to Cincoze for service.
- Customers must collect all the information about the problems encountered and note anything abnormal and describe the problems on the "Cincoze Service Form" for the RMA number apply process.
- Charges may be incurred for certain repairs. Cincoze will charge for repairs to products whose warranty period has expired. Cincoze will also charge for repairs to products if the damage resulted from acts of God, environmental or atmospheric disturbances, or other external forces through misuse, abuse, or unauthorized alteration or repair. If charges will be incurred for a repair, Cincoze lists all charges, and will wait for customer's approval before performing the repair.
- Customers agree to insure the product or assume the risk of loss or damage during transit, to prepay shipping charges, and to use the original shipping container or equivalent.
- Customers can be send back the faulty products with or without accessories (manuals, cable, etc.) and any components from the system. If the components were suspected as part of the problems, please note clearly which components are included. Otherwise, Cincoze is not responsible for the devices/parts.
- Repaired items will be shipped along with a "Repair Report" detailing the findings and actions taken.

Limitation of Liability

Cincoze' liability arising out of the manufacture, sale, or supplying of the product and its use, whether based on warranty, contract, negligence, product liability, or otherwise, shall not exceed the original selling price of the product. The remedies provided herein are the customer's sole and exclusive remedies. In no event shall Cincoze be liable for direct, indirect, special or consequential damages whether based on contract of any other legal theory.

Technical Support and Assistance

- 1. Visit the Cincoze website at www.cincoze.com/warranty.php where you can find the latest information about the product.
- 2. Contact your distributor or our technical support team or sales representative for technical support if you need additional assistance. Please have following information ready before you call:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Conventions Used in this Manual

This indication alerts operators to an operation that, if not strictly observed, may result in severe injury.

This indication alerts operators to an operation that, if not strictly observed, may result in safety hazards to personnel or damage to equipment.

This indication provides additional information to complete a task easily.

Safety Precautions

Before installing and using this device, please note the following precautions:

- 1. Read these safety instructions carefully.
- 2. Keep this User's Manual for future reference.
- 3. Disconnected this equipment from any AC outlet before cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 7. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 8. Use a power cord that has been approved for using with the product and that it matches the voltage and current marked on the product's electrical range label. The voltage and current rating of the cord must be greater than the voltage and current rating marked on the product.
- 9. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 10. All cautions and warnings on the equipment should be noted.
- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.

If one of the following situations arises, get the equipment checked by service personnel:

- The power cord or plug is damaged.
- Liquid has penetrated into the equipment.
- The equipment has been exposed to moisture.
- The equipment does not work well, or you cannot get it work according to the user's manual.
- The equipment has been dropped and damaged.
- The equipment has obvious signs of breakage.
- CAUTION: Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer.

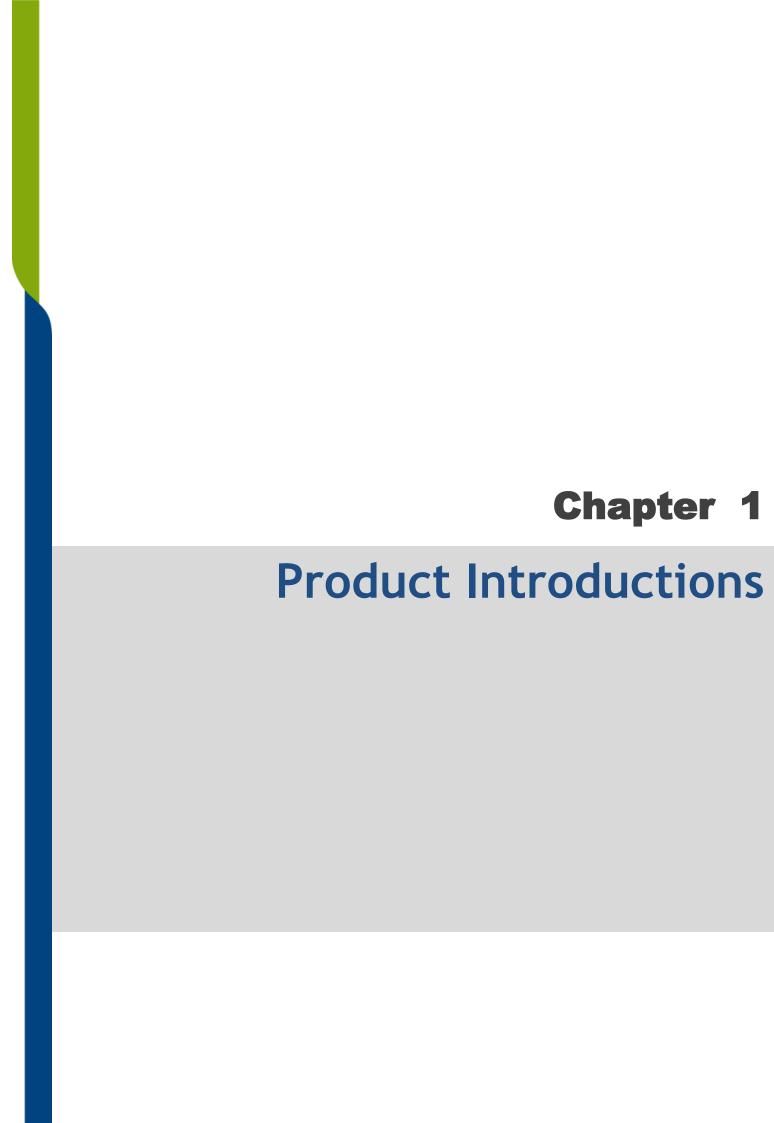
CN-TB-OP22-44 V1.0

Package Contents

Before installation, please ensure all the items listed in the following table are included in the package.

Item	Description	Q'ty
1	Embedded System	1
2	Utility DVD Driver	1
3	Heat Sink Pack	1
4	Screw Pack	1
5	Wall Mounting Kit	1
6	Power Terminal Block Connector	1
7	Remote Power On/Off Terminal Block Connector	1
8	Remote Power Reset Terminal Block Connector	1
9	Fan Terminal Block Connector	1
10	DVI-I to VGA Adaptor	1

Note: Notify your sales representative if any of the above items are missing or damaged.


Ordering Information

Model No.	Product Description
DS-1200-R10	8th Generation Intel® Core™ Series Processors, High Performance, Expandable and Modular Rugged Embedded Computer
DS-1201-R10	8th Generation Intel® Core™ Series Processors, High Performance, Expandable and Modular Rugged Embedded Computer with 1x PCI/PCIe Expansion Slots
DS-1202-R10	8th Generation Intel® Core™ Series Processors, High Performance, Expandable and Modular Rugged Embedded Computer with 2x PCI/PCIe Expansion Slots

Optional Modules & Accessories

Model No.	Description
CFM-PoE03	CFM Module with PoE Control Function, Individual Port 25.5W
CFM-IGN101	CFM Module with Power Ignition Sensing Function, 12V/24V Selectable for DS-1200/ DS-1100/ P1101 Series
CMI-LAN01/UB1012	CMI Module with 4x Intel I210-AT GbE LAN, RJ45 Port / 1x Universal Bracket with 4x RJ45 Cutout for DS-1200 Series
CMI-M12LAN01/UB1010	CMI Module with M12 Connector, 4x Intel GbE LAN / 1x Universal Bracket with 4x M12 Cutout for DS-1200 Series
CMI-DIO02/UB1018	CMI Module with 16DIO (8in 8out), 1x Universal Bracket with DIO Cutout for DS-1200 Series
CMI-COM02/UB1004	CMI Module with 4 x RS232/422/485 (Support 5V/12V), 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series
CMI-ICOM01/UB1004	CMI Module with 4 x isolated RS232/422/485 (Support 5V/12V), 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series
MEC-COM-M212- DB9/UB0303	Mini-PCle Module with 2x COM Ports, 1x Standard DB9 Cable, 2x Universal Bracket each with 1x DB9 Cutout for DS / P1000 Series
MEC-USB-M002- 30/UB0314	Mini-PCle Module with 2x USB 3.0 Ports, 1x 30cm cable, 1xUniversal Bracket with 2x USB Cutout for DS Series
MEC-LAN-M002- 30/UB0311	Mini-PCIe Module with 2x LAN Ports, 2x 30cm cable, 1x Universal Bracket with 2x RJ45 Cutout for DS Series
FAN-EX101	External Fan with 4pin Terminal Block Plug, Mounting Bracket, Support Smart Fan
FAN-UB100	Exhaling Fan with 4pin Connector, Universal Bracket
FAN-UB101	Inhaling Fan with 4pin Connector, Universal Bracket
PAH01	Power Adapter Holder for GST120A24
PAH02	Power Adapter Holder for GST220A24
GST120A24-CIN	Adapter AC/DC 24V 5A 120W, with 3pin Terminal Block Plug 5.0mm Pitch, with TUBES, level VI
	Adapter AC/DC 24V 5A 120W, with 3pin Terminal Block Plug 5.0mm

Model No.	Description
GST220A24-CIN	Adapter AC/DC 24V 9.2A 220W with 3pin Terminal Block Plug 5.0mm Pitch, with TUBES, level VI
RC-E8E8-01	Riser Card with 2x PClex8 Slots
RC-E16E1-01	Riser Card with 1x PClex16 and 1x PClex1 Slots
RC-E16PI-01	Riser Card with 1x PCIex16 and 1x PCI Slots
RC-PIPI-01	Riser Card with 2x PCI Slots

1.1 Overview

DS-1200 series is a high performance fanless embedded computer, powered by 8th generation Intel® Core™ processor (Coffee Lake) with up to 6 cores and 32GB DDR4 memory capacity for unprecedented performance to fulfill all kinds of high-end computing requirements. The system also incorporates rich I/O, such as 2x Intel® GbE ports, 2x USB 3.1 (Gen2), 4x USB 3.0, 1x DVI-I, 2x DisplayPort, and 1x M.2 Key M 2280 socket for ultra-fast data transfer speed.

Based on Cincoze' innovative CMI & CFM Technology, it allows users to expand I/O and functionalities through ready-to-use modules, such as GbE/PoE ports, serial ports, optical isolated digital I/O and power ignition function. Furthermore, DS-1200 series supports maximum 2 PCI(e) expansion slots to accommodate versatile add-on cards.

Designed to operate under harsh conditions, DS-1200 series has passed rigorous testing like EN50155 (EN50121-3-2) and EN60950-1 to fulfill industrial applications such as rolling stock. Besides, DS-1200 series features with wide operating temperature (-40°C to 70°C), wide range DC power input (from 9V to 48V), high tolerance of shock/vibration (5G/50G), and industrialgrade protections (OVP, OCP, ESD Surge, ...etc).

1.2 Highlights

High Performance

The new 8th generation Intel® Core™ processor (Coffee Lake) offers for the first time up to 6 cores, 12 threads and 1.4 times computing performance improvement comparing to the previous generation (Kaby Lake).

Fully Modular and Expandable

Featuring PCI/PCIe expansion slots, Mini-PCIe slots, CMI (Combined Multiple I/O), CFM (Control Function Module), and versatile ready-to-use modules. DS-1200 series provides great flexibility to configure the system according to your need.

Wide Temperature

DS-1200 series is designed for continuous operation in wide temperature range from -40°C to 70°C. In addition, it also features with anti-shock/vibration and ESD/surge protection for tough industrial environments.

1.3 Product Pictures

Front

Rear

DS-1200

DS-1201

DS-1202

1.4 Key Features

- Supports 8th Gen Intel® Core™ / Pentium® / Celeron® Hexa Cores 35W/65W LGA 1151 Processors
- 2x DDR4 SO-DIMM Socket, Supports Up to 2666MHz, 32GB
- Triple Independent Displays: 1x DVI-I and 2x DP (4K Resolution)
- 1x M.2 2280 M Key Socket, Auto-detection for PClex4 NVMe SSD or SATA Gen3 SSD
- 2x Front Accessible SIM Card Slots for Signal Redundancy
- 2x PCI/PCIe Slots for Add-on Cards (Maximum Length: 235mm) (For DS-1201 & DS-1202 only)
- 4x CMI Slots for Modular I/O Expansions
- 1x CFM Slot for Power Ignition Sensing Function
- Wide Operating Temperature (-40°C to 70°C)
- EN50155 (EN50121-3-2) / EN60950-1 Certified

1.5 Hardware Specification

Processor

Core™ i:

Intel® Core™ i7-8700 Hexa Core 12M Cache, up to 4.6 GHz, TDP 65W Intel® Core™ i5-8500 Hexa Core 9M Cache, up to 4.1 GHz, TDP 65W Intel® Core™ i3-8100 Quad Core 6M Cache, 3.60 GHz, TDP 65W Intel® Core™ i7-8700T Hexa Core 12M Cache, up to 4.0 GHz, TDP 35W Intel® Core™ i5-8500T Hexa Core 9M Cache, up to 3.5 GHz, TDP 35W Intel® Core™ i3-8100T Quad Core 6M Cache, 3.10 GHz, TDP 35W

Pentium®:

Intel® Pentium® G5400 Quad Core 4M Cache, 3.70 GHz, TDP 58W Intel® Pentium® G5400T Quad Core 4M Cache, 3.10 GHz, TDP 35W

Intel® Celeron® G4900 Quad Core 2M Cache, 3.10 GHz, TDP 54W Intel® Celeron® G4900T Quad Core 2M Cache, 2.90 GHz, TDP 35W

Chipset

Intel® Q370

BIOS

AMI 32MB SPI BIOS

Memory

- 2x DDR4-2400/2666 MHz SO-DIMM Sockets, Supports up to 32 GB (Un-buffered and Non-ECC Type)
- * DDR4 2666MHz memory modules are only for Core™ i7/i5 Processors

Graphics

- Integrated Intel® UHD Graphics 630: Core™ i7/i5/i3
- Integrated Intel® UHD Graphics 610: Pentium® /Celeron®
- Supports Triple Independent Display (1x DVI-I, 2x DisplayPort)

Audio

- Realtek® ALC888
- · High Definition Audio

External I/O Interface

- 1x DVI-I (DVI-D: 1920 x 1200 @60Hz / VGA: 1920 x 1080 @60Hz)
- 2x DisplayPort (DisplayPort: 4096 x 2304 @60Hz)
- 2x GbE LAN (Supports WoL, Teaming, Jumbo Frame & PXE), RJ45
- GbE1: Intel® I219
- GbE2: Intel® I210
- 2x USB 3.1 Gen2 (Type A)
- 4x USB 3.0 (Type A)
- 2x USB 2.0 (Type A)
- 2x RS-232/422/485 with Auto Flow Control (Supports 5V/12V), DB9
- 1x PS/2, 6-pin mini-DIN Female Connector
- 1x Line-out & 1x Mic-in, Phone Jack 3.5mm
- 1x ATX Power On/Off Button
- 1x AT/ATX Mode Switch
- 1x Clear CMOS Switch
- 1x Remote Reset Connector, 2-pin Terminal Block
- 1x Remote Power On/Off Connector, 2-pin Terminal Block
- 1x External Fan Connector, 4-Pin Terminal Block (Supports smart fan by BIOS)

Storage

- 2x 2.5" SATA HDD/SSD bay (Gen3), 1x Internal, 1x Front Accessible Supports RAID 0/1
- 3x mSATA (shared by Mini-PCle socket) (Gen3), BIOS Selectable
- 1x M.2 Key M 2280 Socket, Supports PCIe x4 NVMe SSD or SATA SSD (Gen3)

Operating System

• Windows® 10

· Linux: Supports by project

Expansion

- 3x Full-size Mini-PCle Socket
- 2x SIM Socket
- 1x CFM (Control Function Module) Interface
- 2x CMI (Combined Multiple I/O) High Speed Interface
- 2x CMI (Combined Multiple I/O) Low Speed Interface
- 2x Antenna Hole
- 1x PCI/PCIe Expansion slot (with Optional Riser Card) (For DS-1201)
- * Supports maximum dimensions of add-on card (H x L):111.15 x 235mm
- 2x PCI/PCIe Expansion slot (with Optional Riser Card) (For DS-1202)
 - * Supports maximum dimensions of add-on card (H x L):111.15 x 235mm

Other Functions

- Supports Instant Reboot Technology (0.2 sec)
- SuperCap Integrated for CMOS Battery Maintenance-free Operation
- Watchdog Timer: Software Programmable Supports 1~255 sec. System Reset

Power Requirement

- Supports AT/ATX Power Type
- Power Input Voltage 9~48VDC
- 1x 3-Pin Terminal Block
- Power Adapter AC/DC 24V/5A 120W or 24V/9.2A 220W (Optional)

Physical

· Dimensions(WxDxH):

227 x 261 x 88 mm(DS-1200)

227 x 261 x 108 mm(DS-1201)

227 x 261 x 126 mm (DS-1202)

- Weight: 4.3 kg (DS-1200), 4.92 kg (DS-1201), 5.14 kg (DS-1202)
- · Construction: Extruded Aluminum with Heavy Duty Metal
- · Mounting: Wall Mount
- Unibody Chassis
- Fanless Design
- Jumper-less Design

Protection

- Reverse Power Input Protection
- Over Voltage Protection: 58V
- Over Current Protection: 15A
- ESD Protection: +/-15kV (air), +/-8kV (contact)
- Surge Protection: 3.84 kV (impedance 12 ohm 1.2/50us waveform)

Environment

Operating Temperature:

35W TDP Processor: -40°C to 70°C

51~65W TDP Processor: -40°C to 45°C

- * PassMark BurnInTest: 100% CPU, 2D/3D Graphics (without thermal throttling)
- * With extended temperature peripherals; Ambient with air flow
- * According to IEC60068-2-1, IEC60068-2-2, IEC60068-2-14
- Storage Temperature: -40°C to 85°C
- Relative Humidity: 95%RH @ 70°C (non-Condensing)
- Shock: Operating, 50 Grms, Half-sine 11 ms Duration (w/ SSD, according to IEC60068-2-27)
- · Vibration: Operating, 5 Grms, 5-500 Hz, 3 Axes (With SSD, according to IEC60068-2-64)
- MTBF: 396,565 Hours

Certification

- EMC: CE, FCC Class A
- Safetv: LVD. EN60950-1
- Railway: EN50155, EN50121-3-2

1.6 System I/O

1.6.1 Front

ATX power on/off switch

Press to power-on or power-off the system

AT/ATX Mode Select Switch

Used to select AT or ATX power mode

Power LED

Indicates the power status of the system

Temperature LED

Indicates the temperature of the system

HDD LED

Indicates the status of the hard drive

Digital I/O LED

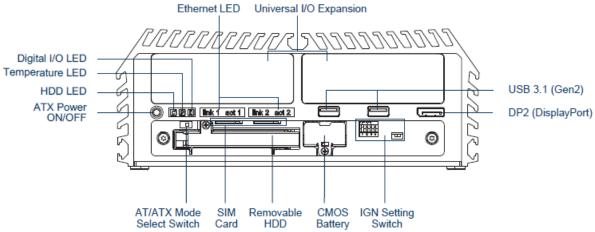
Indicates the working status of digital input/output

Ethernet LED

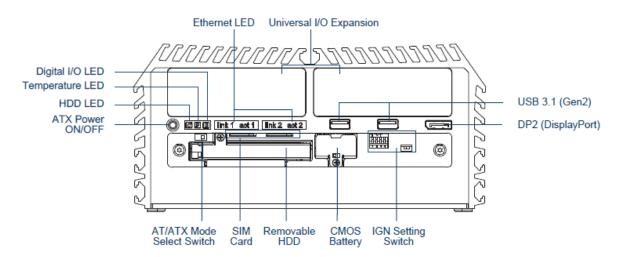
Indicates the status of the LAN ports

USB 3.1 Port

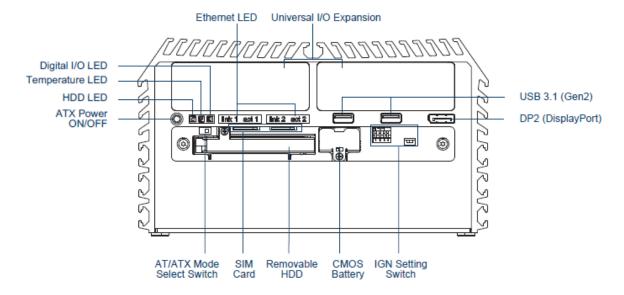
Used to connect USB 3.1/3.0/2.0/1.1 device


DisplayPort Port

Used to connect the system with DisplayPort monitor


SIM card, CMOS Battery, and 2.5" **Removable HDD Bay**

Used to insert a SIM card, CMOS battery, and 2.5" HDD


DS-1200

DS-1201

DS-1202

1.6.2 Rear

DC IN Terminal Block

Used to plug a DC power input with terminal block

External Fan Terminal Block

Used to plug a external fan with terminal block

DVI-I Port

Used to connect a DVI monitor or connect optional split cable for dual display mode

PS/2 Port

Used to connect the PS/2 device

LAN Port

Used to connect the system to a local area network

DisplayPort

Used to connect the system with DisplayPort Monitor

USB 3.0 Port

Used to connect USB 3.0/2.0/1.1 device

USB 2.0 Port

Used to connect USB 2.0/1.1 device

Antenna Hole

Used to install an antenna jack

COM Port

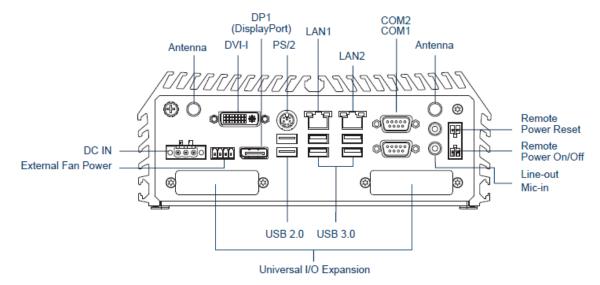
COM 1 ~ COM 2 support RS232/422/485 serial device

Mic-in

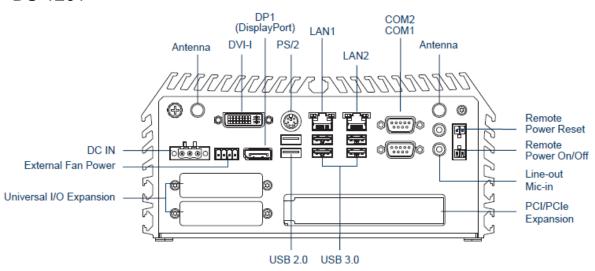
Used to connect a microphone

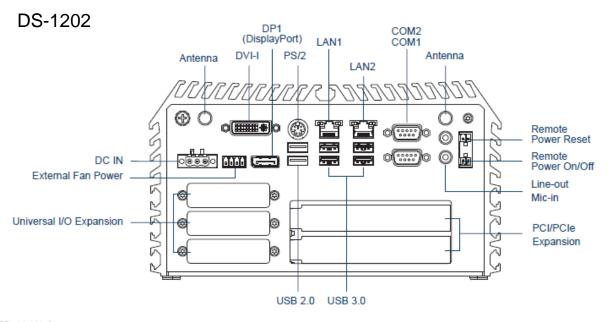
Line-out

Used to connect a speaker

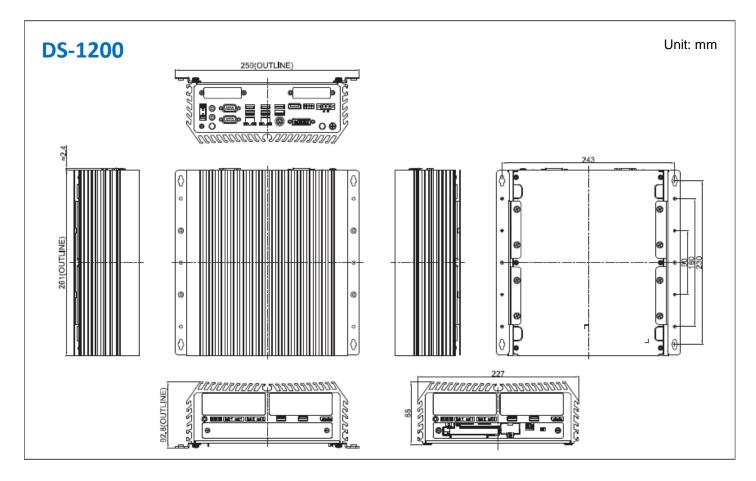

Remote Power on/off and Remote Power **Reset Terminal Block**

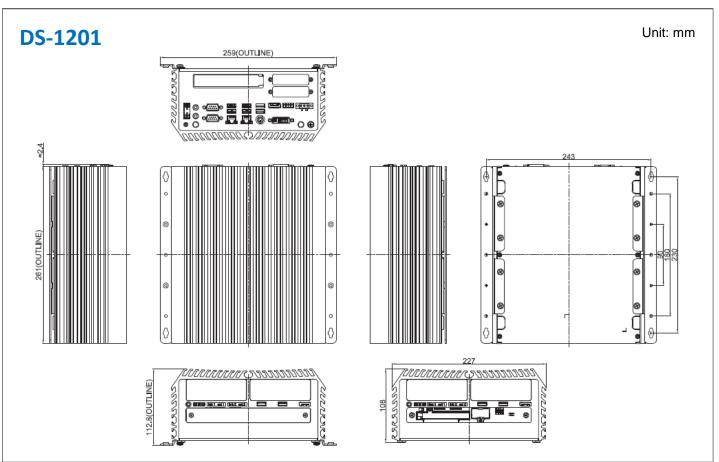
Used to plug a remote power on/off and remote power reset with terminal block

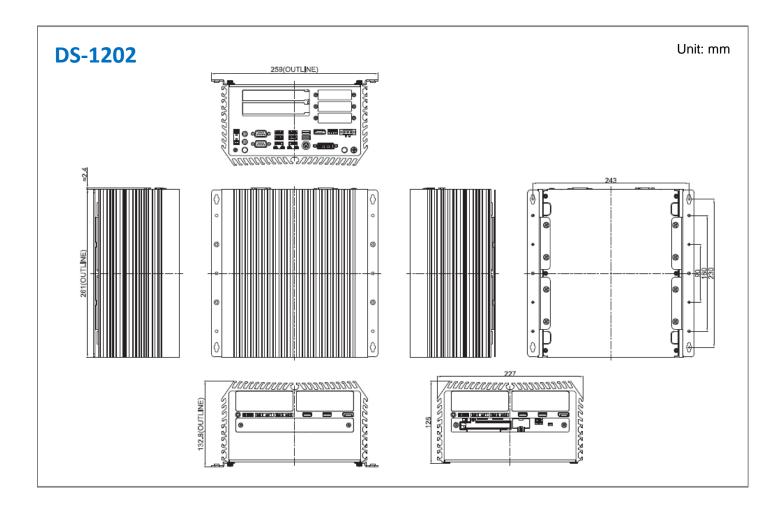

Universal I/O Bracket

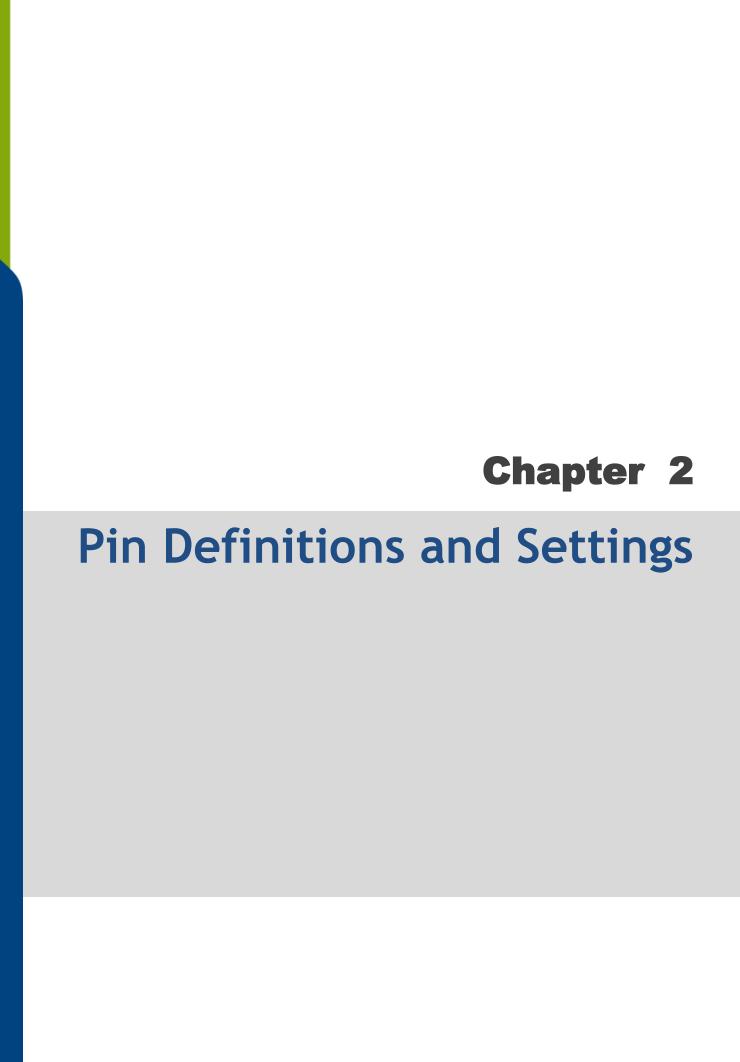

Used to customized I/O output

DS-1200

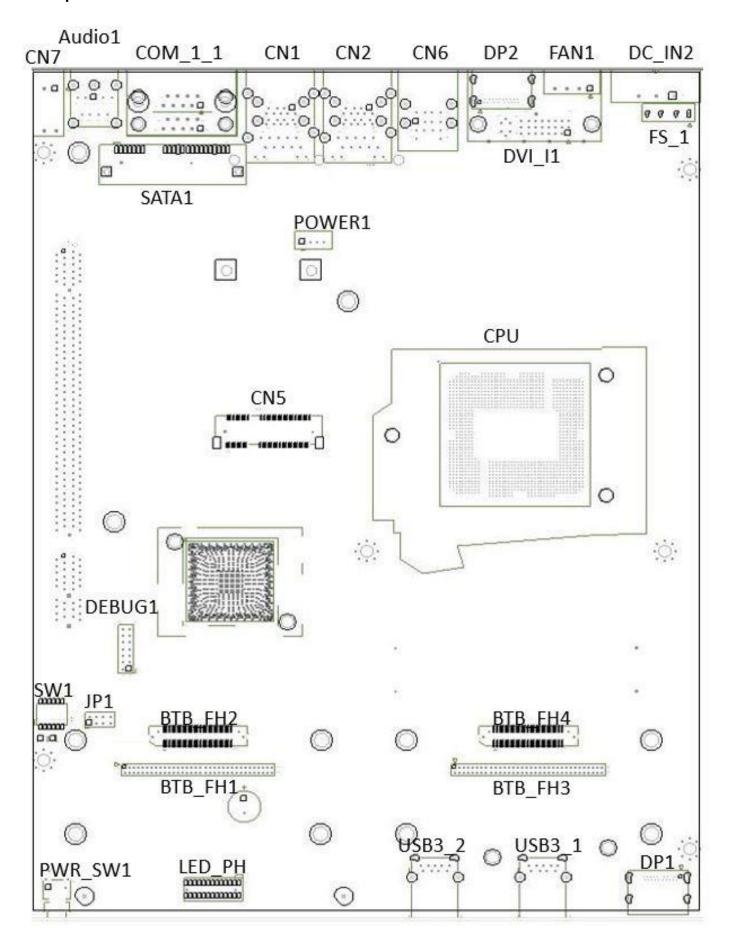


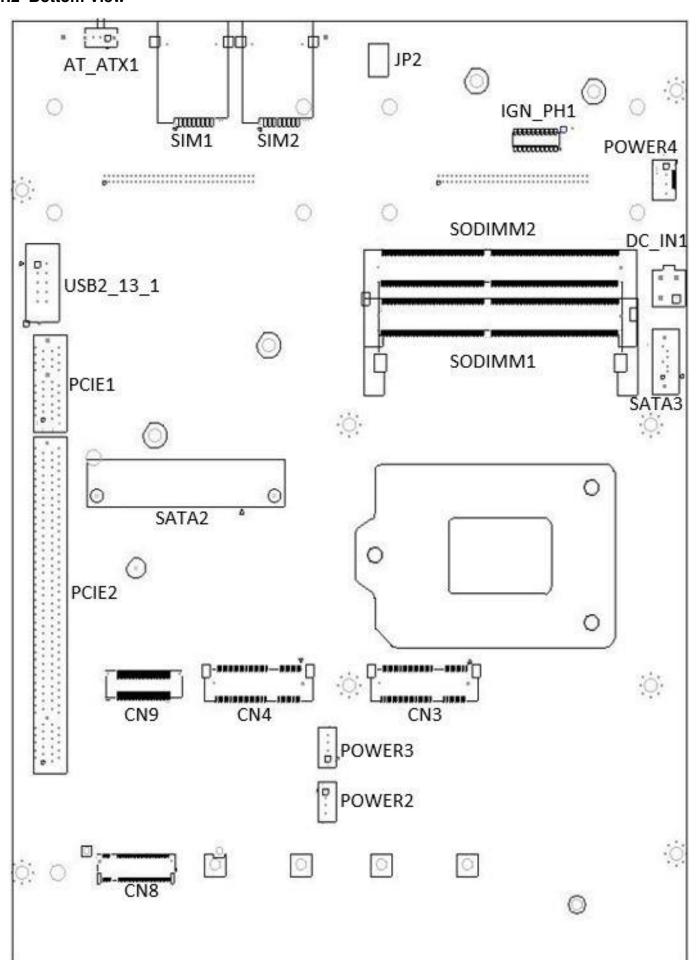

DS-1201





1.7 Mechanical Dimension





2.1 Location of the Connectors and Switches

2.1.1 Top View

2.1.2 Bottom View

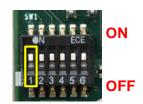
2.2 Connector / Switch Definition

List of Connector / Switch

Connector Location	Definition			
SW1	RTC / SATA DOM / COM1 / COM2 Power Select			
JP1	BIOS SPI interface (Optional)			
JP2	RTC Battery board to board connector			
AT_ATX1	AT / ATX Power Mode Switch			
Debug1	Engineer Use / LPC 80 Port interface (Optional)			
PWR_SW1	Power Button, System LED			
BTB_FH1, BTB_FH3	DIO + COM Port Board to Board Connector			
BTB_FH2, BTB_FH4	PSE LAN Port Board to Board Connector			
IGN_PH1	IGN Board to Board connector			
FS1	Input Fuse 15A			
DC_IN1	4-PIN DC Out			
DC_IN2	3-PIN DC 9~48V Power Input with Power Ignition Connector			
FAN1	External PWM Fan Connector			
DP1, DP2	DisplayPort Connector			
DVI_I1	DVI-I Connector			
CN6	PS/2 and USB 2.0 Ports			
CN1	LAN1 and USB 3.0 Ports			
CN2	LAN2 and USB 3.0 Ports			
COM_1_1	COM1 / COM2, RS232 / RS422 / RS485 Connector			
AUDIO1	Audio Jack / MIC_IN / LINE_OUT			
CN7	Remote Power On / Off, Reset Switch			
USB3_1, USB3_2	USB 3.1 Ports			
SIM1, SIM2	SIM Card Socket			
SATA1, SATA2	22 Pin SATA Connector			
SATA3	SATA Connector			
Power 1~4	Power Connector			
CN5	Mini PCI-Express Socket + mSATA + 4G Module			
CN3, CN4	Mini PCI-Express / mSATA Socket			
CN8	M.2 PCIE / SATA SSD			
USB2_13_1	Internal USB 2.0 Ports			
PCIE1	PCI-Express X16 Socket			
PCIE2	PCI-Express X1 Socket			
SODIMM1, SODIMM2	DDR4 SODIMM Socket			

2.3 Definition of Switches

AT ATX1: AT / ATX Power Mode Switch


Pin	Definition
1-2 (Right)	ATX Power Mode (Default)
2-3 (Left)	AT Power Mode

SW1 Pin Defined: RTC / SATA DOM / COM1 / COM2 Power Select

Super CAP Function Setting: Pin Define SW1 Switch

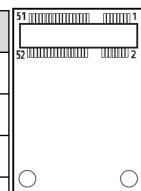
Switch mode Function		ON	OFF
1	1 Super CAP		Disable

SATA DOM Function Setting : Pin Define SW1 Switch

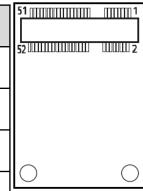
Switch mode	Function	ON	OFF
2	SATA DOM	Disable (Default)	Enable

COM1/2 Voltage Function Setting : Pin Define SW1 Switch

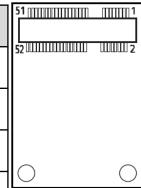
Switch mode	Function		ON	OFF
		0V(RI)	ON / ON (Default)	
3-4	COM1	5V	ON / OFF	
		12V	OFF / OFF	
		0V(RI)	ON / ON	(Default)
5-6	COM2	5V	ON / OFF	
		12V	OFF /	OFF



2.4 Definition of Connectors


CN5: Mini PCI-Express Socket (Support mSATA and SIM Card to Link feature)

Pin	Definition	Pin	Definition	Pin	Definition
1	WAKE#	19	SIM_DATA2	37	RESERVED
2	3.3V	20	3.3V	38	USB_D+
3	NA	21	GND	39	RESERVED
4	GND	22	PERST#	40	GND
5	NA	23	PERN/SATARP	41	3.3V
6	1.5V	24	3.3V	42	NA
7	UIM_RST2	25	PERP/SATARN	43	GND
8	SIM_PWR1	26	GND	44	NA
9	GND	27	GND	45	NA
10	SIM_DATA1	28	+1.5V	46	NA
11	REFCLK-	29	GND	47	NA
12	SIM_CLK	30	SMB_CLK	48	+1.5V
13	REFCLK+/SIM_PWR2	31	PETN/SATATN	49	NA
14	SIM_Reset1	32	SMB_DATA	50	GND
15	GND	33	PETP/SATAPN	51	NA
16	SIM_VPP1	34	GND	52	+3.3V
17	SIM_CLK2	35	GND		
18	GND	36	USB_D-		


CN4 : Mini PCI-Express Socket (Support mSATA feature)

Pin	Definition	Pin	Definition	Pin	Definition
1	WAKE#	19	NA	37	GND
2	3.3V	20	3.3V	38	USB_D+
3	NA	21	GND	39	3.3V
4	GND	22	PERST#	40	GND
5	NA	23	PERN/SATARXP	41	3.3V
6	1.5V	24	3.3V	42	NA
7	NA	25	PERPSATARXN	43	GND
8	NA	26	GND	44	NA
9	GND	27	GND	45	NA
10	NA	28	+1.5V	46	NA
11	NA	29	GND	47	NA
12	NA	30	SMB_CLK	48	+1.5V
13	NA	31	PETN/SATATXN	49	NA
14	NA	32	SMB_DATA	50	GND
15	GND	33	PETP/SATATXP	51	NA
16	NA	34	GND	52	+3.3V
17	NA	35	GND		
18	GND	36	USB_D-		

CN3: Mini PCI-Express Socket (Support mSATA feature)

Pin	Definition	Pin	Definition	Pin	Definition
1	WAKE#	19	NA	37	GND
2	3.3V	20	3.3V	38	USB_D+
3	NA	21	GND	39	3.3V
4	GND	22	PERST#	40	GND
5	NA	23	PERN/SATARP	41	3.3V
6	1.5V	24	+3.3VAUX	42	NA
7	CLKREQ#	25	PERP/SATARN	43	GND
8	NA	26	GND	44	NA
9	GND	27	GND	45	NA
10	NA	28	+1.5V	46	NA
11	REFCLK-	29	GND	47	NA
12	NA	30	SMB_CLK	48	+1.5V
13	REFCLK+	31	PETN/SATATN	49	NA
14	NA	32	SMB_DATA	50	GND
15	GND	33	PETP/SATATP	51	NA
16	NA	34	GND	52	+3.3V
17	NA	35	GND		
18	GND	36	USB_D-		

CN8: M.2 Socket Socket (Support M.2 PCIE / SATA SSD feature)

Pin	Definition	Pin	Definition	Pin	Definition
1	CFG3	27	GND	53	REFCLKN
2	+3.3V	28	NC	54	PEWAKE#
3	GND	29	PERN1	55	REFCLKP
4	+3.3V	30	NC	56	NC
5	PERN3	31	PERP1	57	GND
6	NC	32	NC	58	NC
7	PERP3	33	GND	59	key
8	NC	34	NC	60	key
9	GND	35	PETN1	61	key
10	LED	36	NC	62	key
11	PETN3	37	PETP1	63	key
12	+3.3V	38	DEVSLP	64	key
13	PETP3	39	GND	65	key
14	+3.3V	40	SMB_CLK	66	key
15	GND	41	PERNO/SATARPO	67	NC
16	+3.3V	42	SMD_DATA	68	SUSCLK
17	PERN2	43	PERP0/SATARN0	69	PEDET
18	+3.3V	44	ALERT#	70	+3.3V
19	PERP2	45	GND	71	GND
20	NC	46	NC	72	+3.3V
21	CFG0	47	PETN0/SATATN0	73	GND
22	NC	48	NC	74	+3.3V
23	PETN2	49	PETP0/SATATP0	75	CFG2
24	NC	50	RESET#	76	NC
25	PETP2	51	GND		
26	NC	52	NC		

SATA3: SATA Connector (SATA DOM)

Pin	Definition	Pin	Definition
1	GND	5	RX2-
2	TX2+	6	RX2+
3	TX2-	7	NC/+5V
4	GND		

POWER1, POWER2, POWER3, POWER4: Power Connector

Connector Type: 1X4-pin Wafer, 2.54mm pitch

Pin	Definition
1	+5V
2	GND
3	GND
4	+12V

CLR_CMOS1: Clear BIOS Switch

Pin	Definition
1-2 (Left)	Normal Status (Default)
2-3 (Right)	Clear BIOS

PWR_SW1: Power and Thermal LED

Button	Definition
ON	Green
OFF	Blue
Thermal	Red

LED_PH: TEMP/HDD/GPIO LED Status

LED PH1		
TEMP LED	HDD LED	GPIO LED

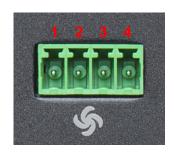
LAN LED Status Defines

Act LED Status	Definition	Link LED Status	Definition
Blinking Yellow	Data Activity	Steady Green	1Gbps Network Link
Off	No Activity	Steady Orange	100Mbps Network Link
		Off	10Mbps Network Link

31

DC_IN1: DC Power Input Connector (+9~48V)

Connector Type: Terminal Block 1X3 3-pin, 5.0mm pitch


Pin	Definition
1	+9~48VIN
2	Ignition (IGN)
3	GND

FAN1: External PWM Fan Connector

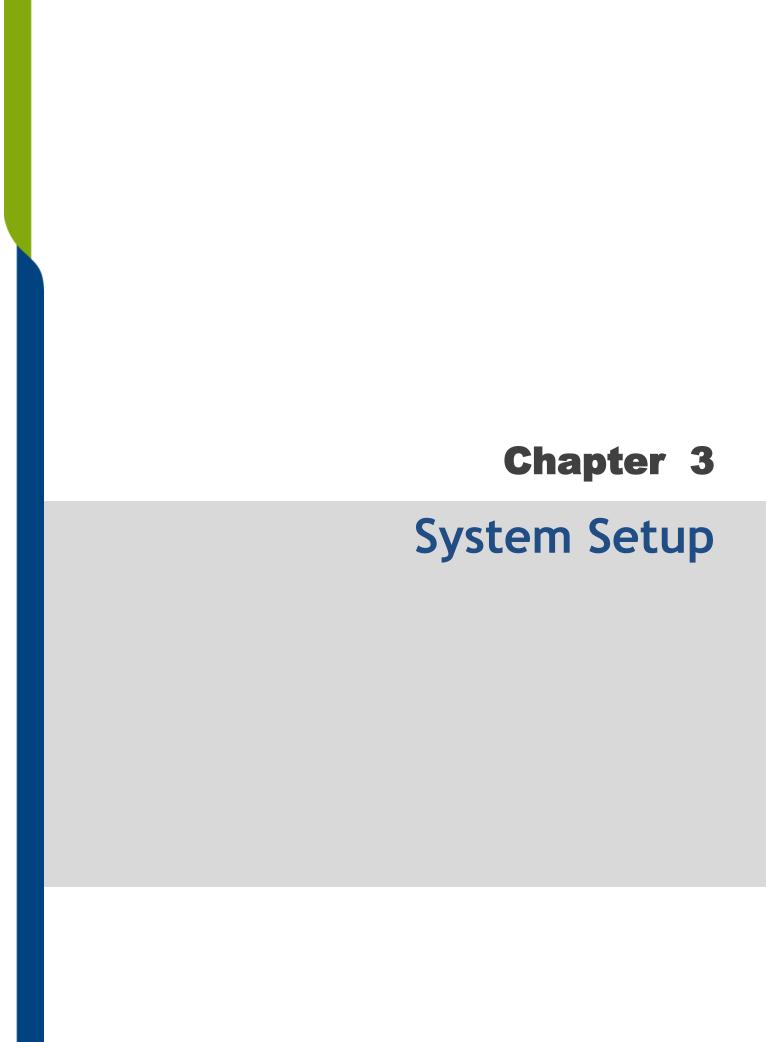
Connector Type: Terminal Block 1X4 4-pin, 3.5mm pitch

Pin	Definition
1	GND
2	+12V
3	SENSE
4	Control

CN7: Remote Power On/Off, Reset Connector

Connector Type: Terminal Block 2X2 4-pin, 3.5mm pitch

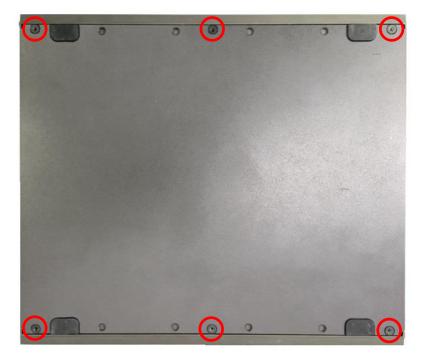
Pin	Definition		
1	PWR_SW		
2	RESET_SW		
3	GND		
4	GND		



COM1_2_1: RS232 / RS422 / RS485 Connector

Connector Type: 9-pin D-Sub

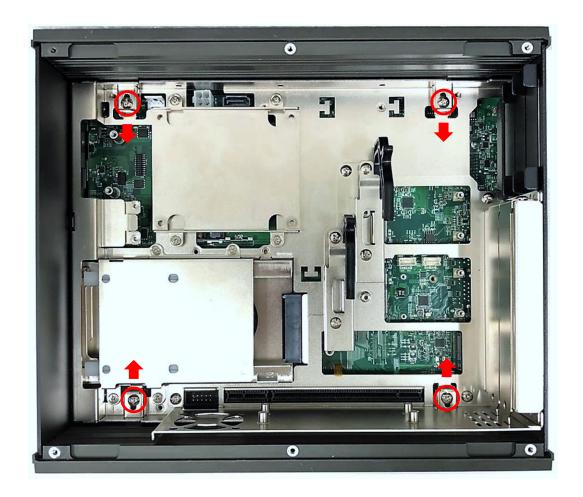
COM1 / COM2				
DB9 Pin	RS232 Definition	RS422 / 485 Full Duplex Definition	RS485 Half Duplex Definition	
1	DCD	TX-	DATA-	
2	RXD	TX+	DATA+	
3	TXD	RX+		
4	DTR	RX-		
5	GND			
6	DSR			
7	RTS			
8	CTS			
9	RI			



3.1 Disassembling the System for Installation

In order to prevent electric shock or system damage, before removing the chassis cover, must turn off power and disconnect the unit from power source.

1. Turn over the unit to have the bottom side face up, unscrew the 6 screws of bottom cover and place them aside for later use.

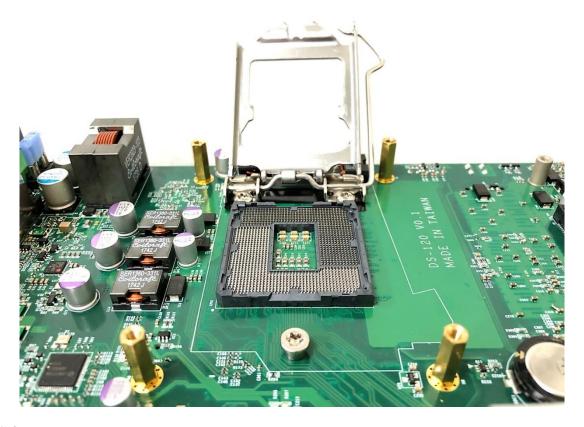

2. Remove the bottom cover from the chassis.

3. Unscrew the 2 screws at rear panel as marked on photo and place them aside for later use.

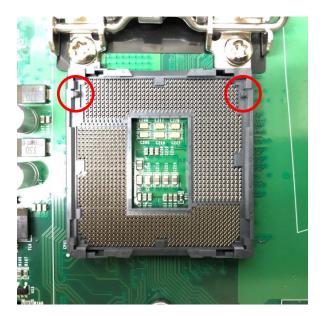
4. Loosen the 4 screws. Pull out 4 latches as marked on photo.

5. Lift up the unit vertically by holding the front and rear panel.

6. Turn over the body of the unit and place it gently.

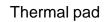


3.2 Installing the CPU


1. Locate the CPU socket, remove the protection cover on it.

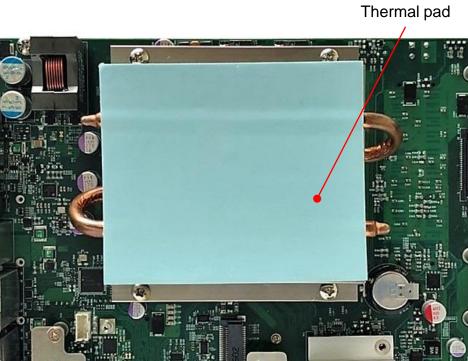
2. Press the CPU socket lever and pull it aside away from the socket to unlock it. Pull back the lever to open the socket.

3. Align the notches on CPU with the alignment post on socket.



4. The notches of socket provide the space for fingers while lowering the CPU, hold the CPU by the edges toward the notches and insert the CPU gently.

5. Place the thermal pad on the CPU heat spreader. Press down the socket lever to lock the CPU.



6. Align mounting holes of heat sink with the nut studs and fasten the heat sink with provided 4 screws.



7. Place thermal pad on the top of CPU heatsink in order to provide a seamless contact with the body of chassis to create a efficient heat dissipation.

3.3 Installing a Mini-PCle / mSATA Card on Top Side (Applicable for full or half size card)

1. Locate the Mini PCIe slot on top side of system.

2. Use provided two screws fasten the half size module and adapter bracket together as shown in Fig (a) below.

(a) Half Size Mini-PCle Card

(b) Full Size Mini-PCIe Card

3. Tilt the Mini PCIe module at a 45 degree angle and insert it to the slot until the gold-pated connector of module contacted firmly with the slot.

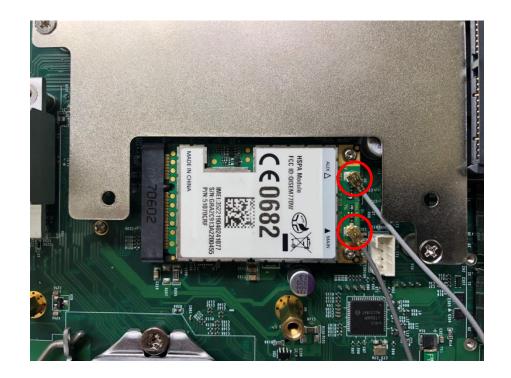
4. Press down the module and fasten two screws to secure the module.

3.4 Installing Antennas

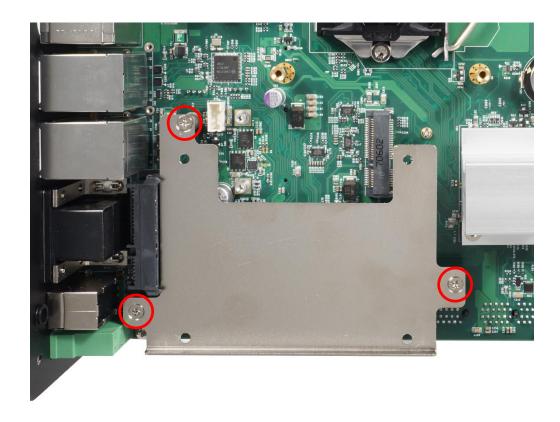
Please installing a Mini PCIe Wireless Lan Card on top side before you put on washer and fasten the nut with antenna jack.

1. Remove the antenna hole covers at rear panel.

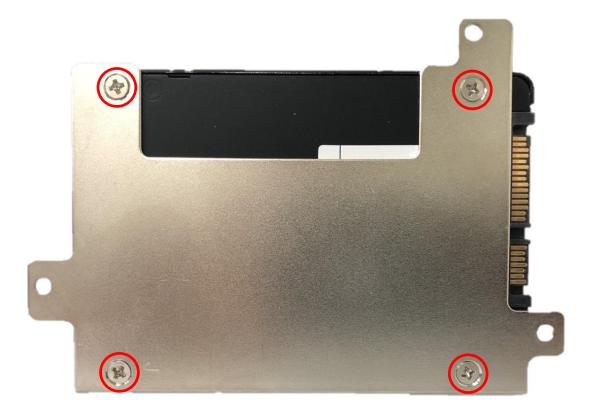
2. Have antenna jack penetrate through the hole.


3. Put on washer and fasten the nut with antenna jack.

4. Assemble the antenna and antenna jack together.



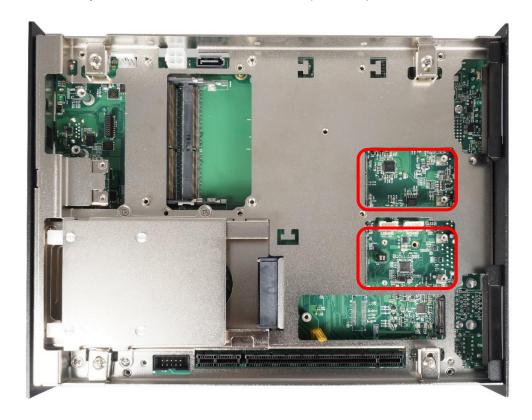
5. Attach the RF connector at another end of cable onto the module.



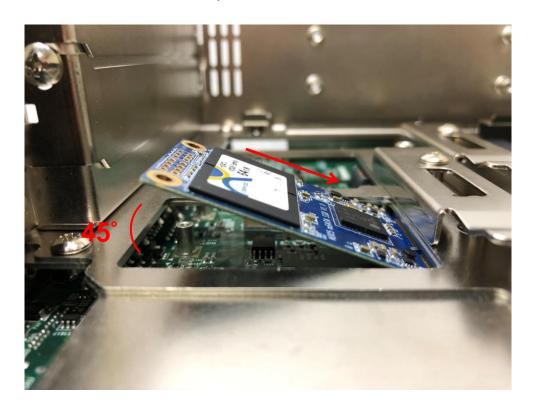
3.5 Installing a SATA Hard Drive on Top Side

1. Unscrew the 3 screws on HDD bracket and remove the bracket.

2. Make the PCB side of the HDD face up, place the HDD bracket on it. Ensure the direction of bracket is correct and use 4 provided screws to assemble HDD and HDD bracket together.



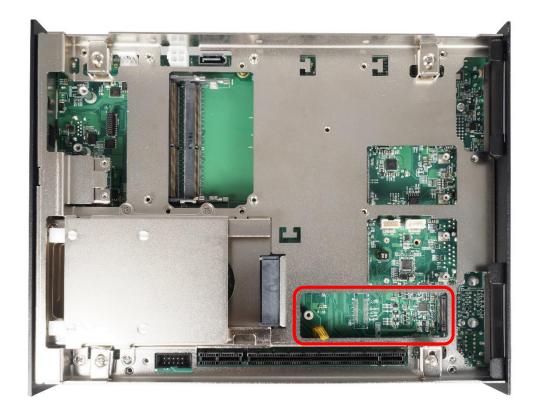
3. Turn over the HDD bracket. Connect the HDD bracket to the SATA connector and fasten the 3 screws.



3.6 Installing a Mini-PCle / mSATA Card on Bottom Side (Applicable for full or half size card)

1. Turn over the body of the unit. Locate Mini-PCIe (mSATA) slots at the bottom.

2. Tilt the Mini-PCIe module at a 45 degree angle and insert it to the slot until the gold-pated connector of module contacted firmly with the slot.

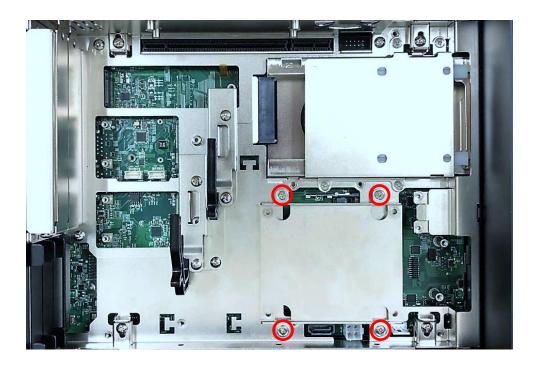


3. Press down the module and use previous two screws to fix the module.

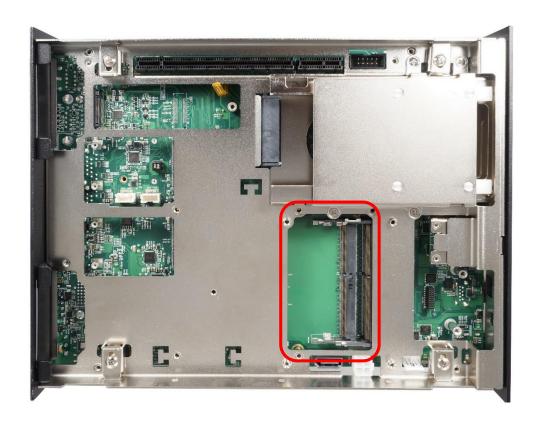
3.7 Installing a M.2 Card

1. Turn over the body of the unit. Locate M.2 slots at the bottom.

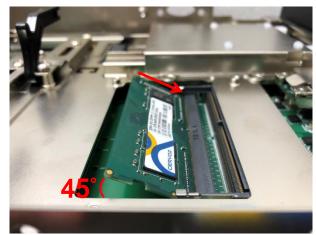
2. Tilt the Mini-PCIe module at a 45 degree angle and insert it to the slot until the gold-pated connector of module contacted firmly with the slot.



3. Press down the module and use previous one screw to fix the module.



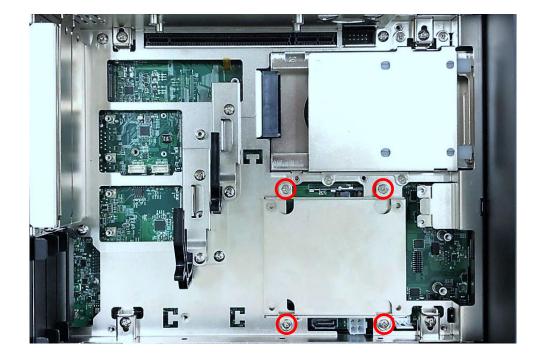
3.8 Installing SO-DIMM Memory


1. Locate the SO-DIMM sockets at the bottom side of system. Unscrews the 4 screws and remove the bracket.



2. Locate two SO-DIMM sockets at the bottom.

3. Tilt the SO-DIMM module at a 45 degree angle and insert it to SO-DIMM socket until the gold-pated connector of module contacted firmly with the socket.

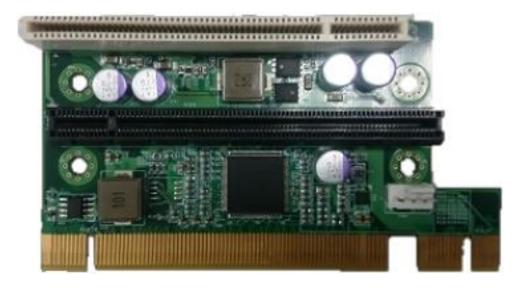

Lower socket

Upper socket

4. Press the modules down until it's fixed firmly by the two locking latches on the sides.

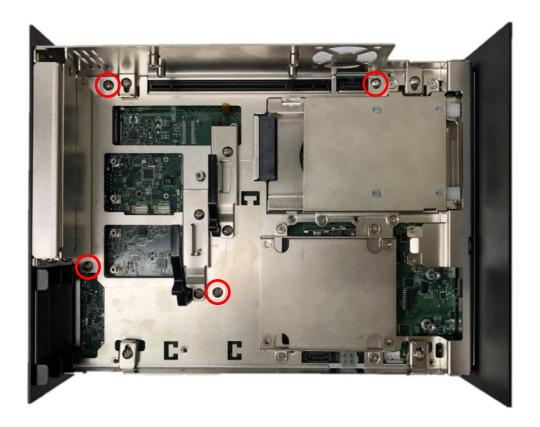
5. Put the cover back and fix the cover with 4 screws.

3.9 Installing a PCI / PCIe Add-on Card

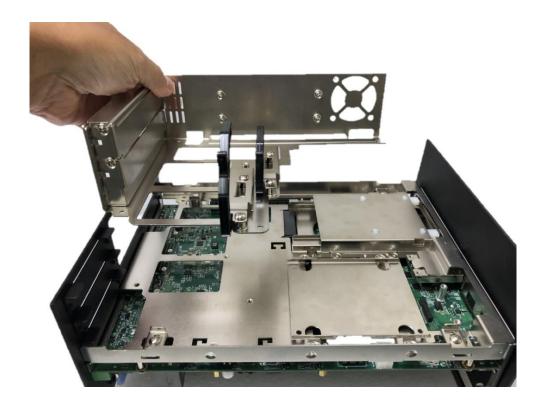

(For DS-1201 and DS-1202 only)

The applicable riser cards for DS-1200 series are listed in the following table.

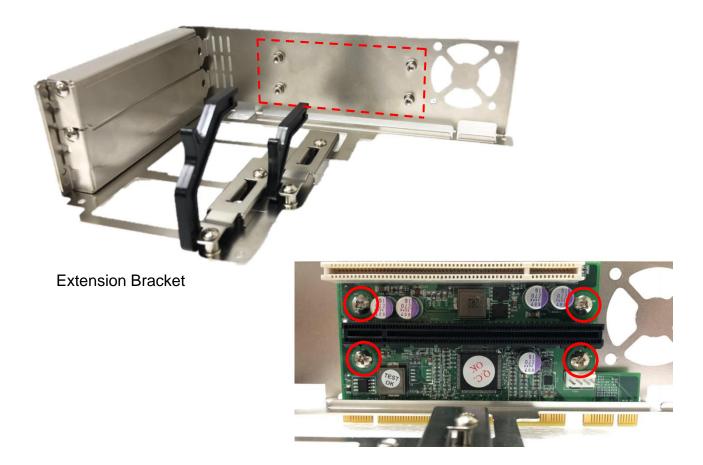
Model No.	Description	Compatible Model
RC-E16-01	Riser Card 1 x PClex16	DS-1201
RC-PI-01	Riser Card 1 x PCI	DS-1201
RC-E16E1-01	Riser Card 1 x PClex16, 1 x PClex1	DS-1202
RC-E8E8-01	Riser Card 2 x PClex8	DS-1202
RC-E16PI-01	Riser Card 1 x PClex16, 1 x PCl	DS-1202
RC-PIPI-01	Riser Card 2 x PCI	DS-1202

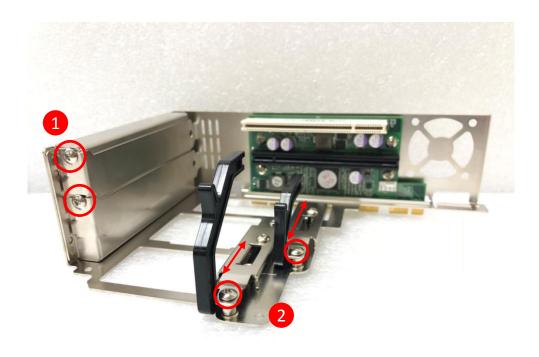

Note: The photo example in this section is illustrated by RC-E16PI-01 module.

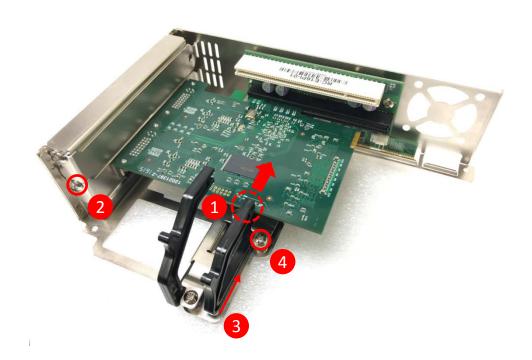
1. Prepare a Riser Card intended for installation.

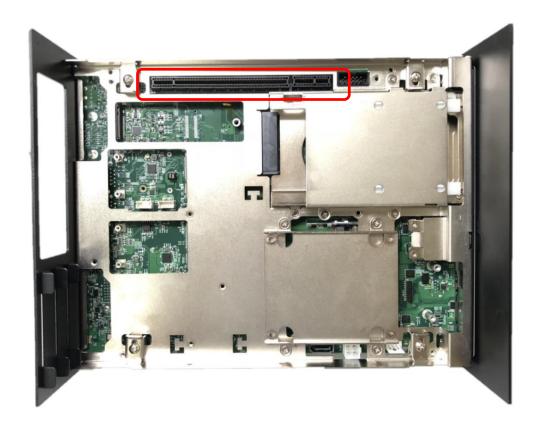


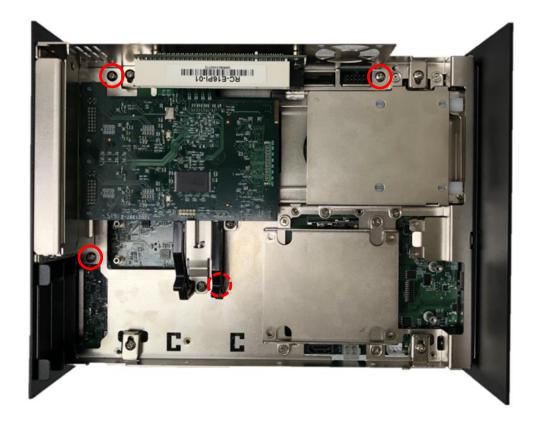
Riser Card RC-E16PI-01


1. Unscrew the 4 screws to remove the extension bracket.


2. Remove the extension bracket from the system.


3. Assemble the riser card with extension bracket together and fasten with the 4 screws.


4. (1) Loosen the screw to remove I/O bracket. (2) Loosen the 2 screws halfway to allow the card retainer to be adjustable.


5. (1) Insert a PCI(e) add-on card to the slot. (2) Fasten the screw to secure it (3) Push the card retainer forward to against the edge of the add-on card. (4) Tighten the screw to fix the card retainer.

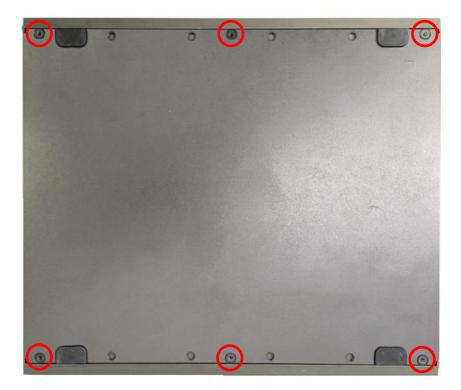
6. Locate the riser card slot on bottom side of system.

7. Install the module assembled in step 4 into the riser card slot, and fasten the 4 screws to secure it.

3.10 Assembling the System

1. Make sure the notch on chassis and the front bezel of body are at the same side.

2. Lift up the body of unit. Make sure that both front and rear panels are in the chassis groves and assemble the body on to chassis firmly.

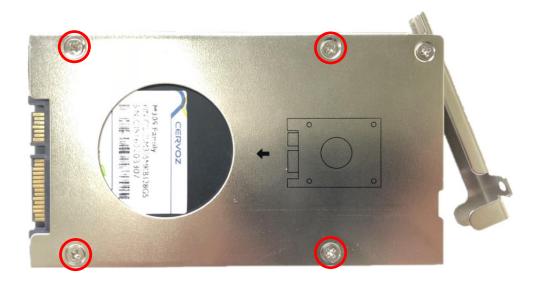

3. Push into the 4 latches as indicated and fasten the 4 screws.

4. Fasten the 2 screws at rear panel.

5. Be sure to align the grooves with front and ear panels. Put the cover back on and fasten the 6 screws to fix the cover.

3.11 Installing a SATA Hard Drive at Front Side

1. Loosen the screws in order to remove the front expansion plate.


2. Locate the removable HDD bay and loosen the screw.

3. Move the rotating arm out and pull the HDD bracket out.

4. Make the PCB side of the HDD face up, place the HDD bracket into it. Ensure the direction of bracket is correct and use 4 provided screws to assemble HDD and HDD bracket together.

5. Align the HDD bracket with the entrance of HDD bay. Holding the rotating arm and insert the HDD bracket until the connector of HDD contact the SATA connector firmly.

6. Place the rotating arm back and fasten the screw.

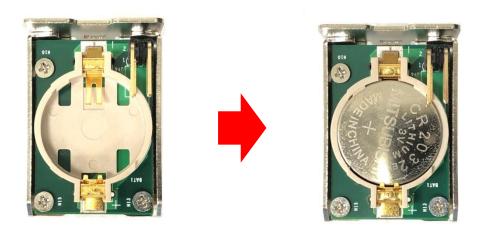
3.12 Installing SIM Card

1. Locate SIM card slots on top of HDD bay.

2. Insert the SIM card according to the icon instruction aside.

SIM 1 SIM 2

3.13 Installing the CMOS Battery


1. Locate the removable CMOS Battery and loosen the screw.

2. Pull out the CMOS battery bracket with assistance of a tweezer.

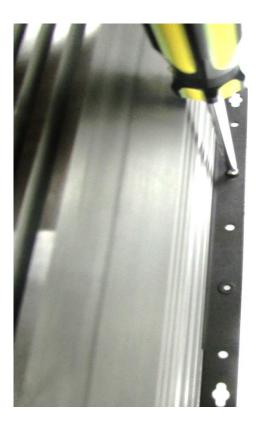
3. Insert a CMOS battery in the battery slot.

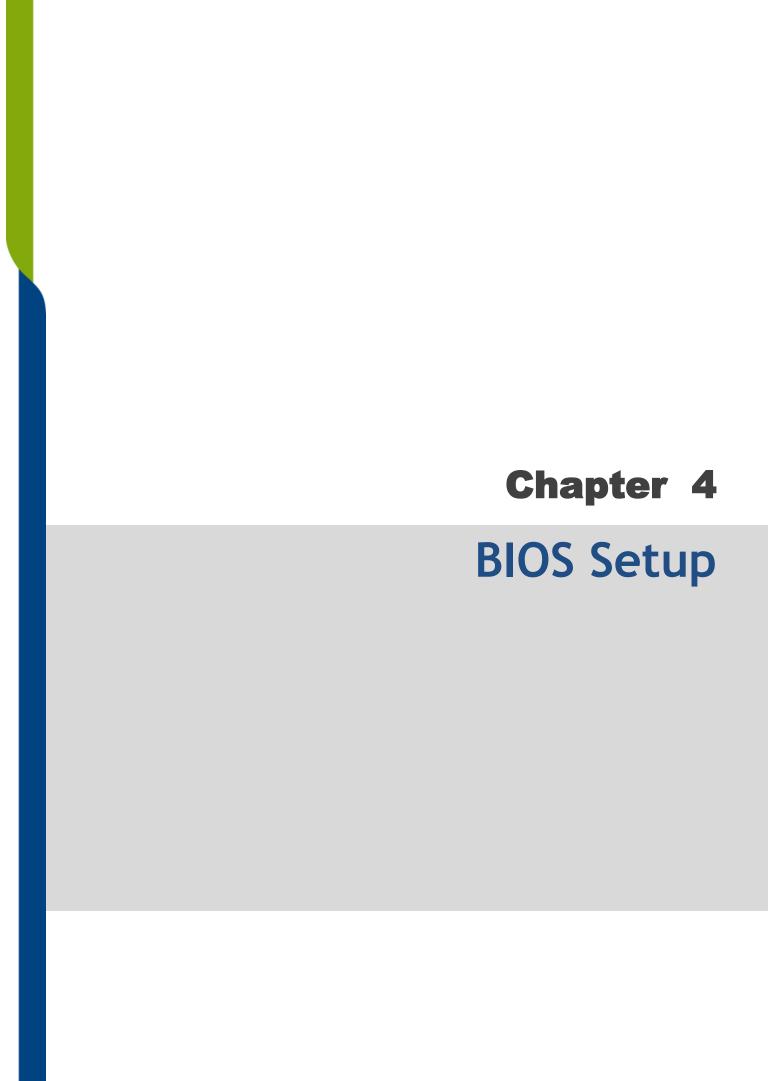
4. Insert the battery bracket firmly and fasten the screw.

3.14 Fasten the Cover

1. Fasten the cover by using the two screws.

3.15 Wall Mount Brackets


DS-1200 series offers wall mount that customers can install system on the wall in convenient and economical ways.



1. The mounting holes are at the bottom of system. Use provided 8 screws to fasten the bracket with each side of system together.

2. Fasten the screws through the bracket mounting hole to mount system on the wall.

4.1 BIOS Introduction

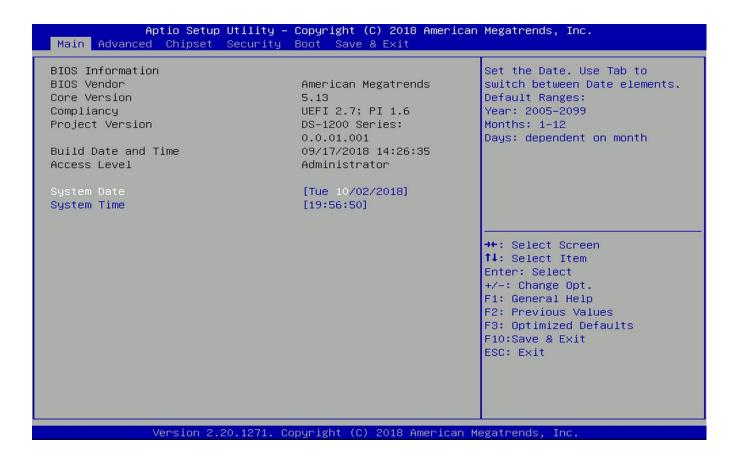
The BIOS (Basic Input/Output System) is a program located on a Flash Memory on the motherboard. When you start the computer, the BIOS program will gain control. The BIOS first operates an auto-diagnostic test called POST (power on self test) for all the necessary hardware, it detects the entire hardware device and configures the parameters of the hardware synchronization.

BIOS Setup

Power on the computer and by pressing immediately allows you to enter Setup. If the message disappears before your respond and you still wish to enter Setup, restart the system to try again by turning it OFF then ON or pressing <Ctrl>, <Alt> and <Delete> keys.

Control Keys						
<->>	Move to select screen					
<↑> <↓>	Move to select item					
<esc></esc>	Quit the BIOS Setup					
<enter></enter>	Select item					
<page +="" up=""></page>	Increases the numeric value or makes changes					
<page -="" down=""></page>	Decreases the numeric value or makes changes					
<tab></tab>	Select setup fields					
<f1></f1>	General help					
<f2></f2>	Previous value					
<f3></f3>	Load Optimized defaults					
<f10></f10>	Save configuration and Exit					

Main Menu


The main menu lists the setup functions you can make changes to. You can use the arrow keys (↑↓) to select the item. The on-line description of the highlighted setup function is displayed at the bottom of the screen.

Sub-Menu

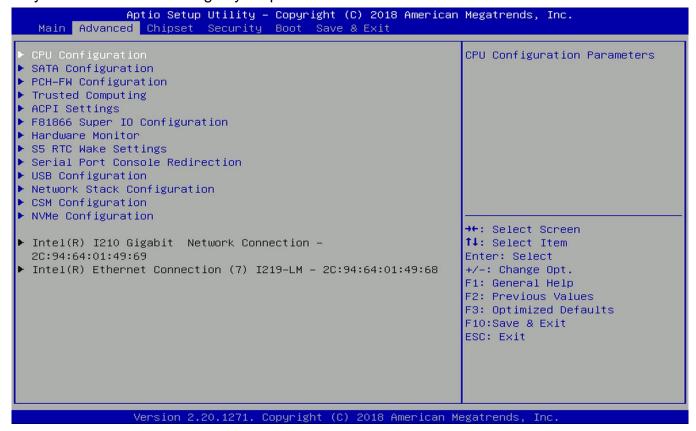
If you find a right pointer symbol appears to the left of certain fields that means a sub-menu can be launched from this field. A sub-menu contains additional options for a field parameter. You can use arrow keys (↑↓) to highlight the field and press <Enter> to call up the sub-menu. Then you can use the control keys to enter values and move from field to field within a sub-menu. If you want to return to the main menu, just press the <Esc >.

4.2 Main Setup

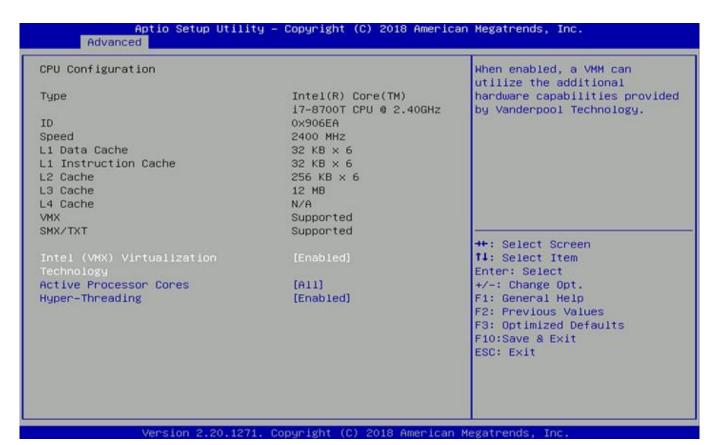
Press key to enter BIOS CMOS Setup Utility, the Main Menu (as shown below) will appears on the screen. Use arrow keys to move among the items and press <Enter> to accept or enter a sub-menu.

System Date

Set the date. Please use <Tab> to switch between date elements.


System Time

Set the time. Please use <Tab> to switch between time elements.


75

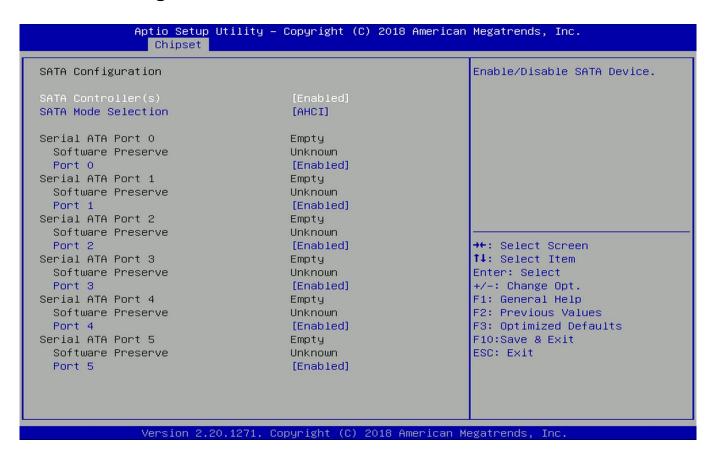
4.3 Advanced Setup

This section allows you to configure and improve your system and allows you to set up some system features according to your preference.

4.3.1 CPU Configuration

Intel (VMX) Virtualization Technology [Enabled]

Enables or disables Intel (VMX) Virtualization Technology. Virtualization enhanced by Intel Virtualization Technology will allow a platform to run multiple operating systems and applications in independent partitions. With virtualization, one computer system can function as multiple virtual systems.


Active Processor Cores

Allows you to choose the number of active processor cores. Configuration options: [All] [1].

Hyper-threading

Enables or disables for Hyper-Threading Technology.

4.3.2 SATA Configuration

■ SATA Controller(s) [Enabled]

Enables or disables SATA device.

■ SATA Mode Selection [AHCI]

Allows you to select which mode SATA controller will operates. Configuration options: [AHCI], [RAID]

■ Serial ATA Port 0

□ Port 0 [Enabled]

Enables or disables SATA Port 0.

Serial ATA Port 1

☐ Port 1 [Enabled]

Enables or disables SATA Port 1.

■ Serial ATA Port 2

□ Port 2 [Enabled]

Enables or disables SATA Port 2.

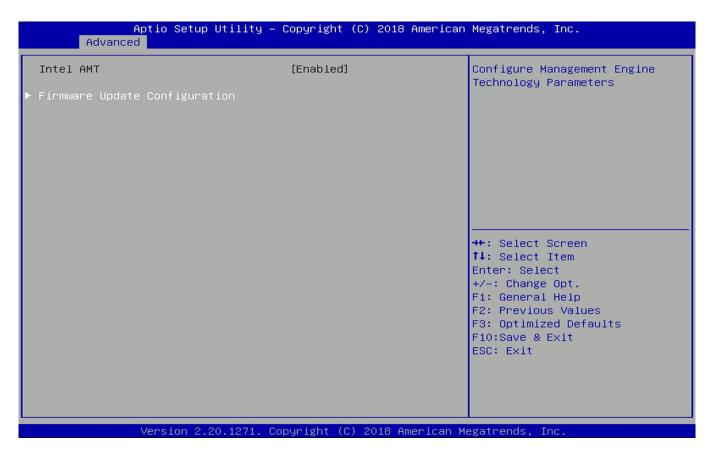
■ Serial ATA Port 3

□ Port 3 [Enabled]

Enables or disables SATA Port 3.

■ Serial ATA Port 4

□ Port 4 [Enabled]


Enables or disables SATA Port 4.

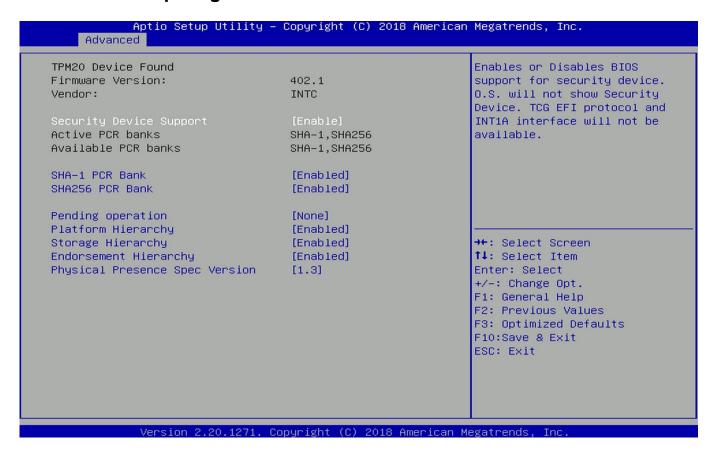
■ Serial ATA Port 5

□ Port 5 [Enabled]

Enables or disables SATA Port 5.

4.3.3 PCH-FW Configuration

■ Firmware Update Configuration


Configure Management Engine Parameters.

■ Me FW Image Re-Flash

Enables or disables ME firmware Image Re-Flash function.

4.3.4 Trusted Computing

Security Device Support [Enabled]

Enables or disables BIOS support for security device.

■ SHA-1 PCR Bank [Enabled]

Enables or disables SHA-1 PCR (Platform Configuration Register) Bank.

■ SHA256 PCR Bank [Enabled]

Enables or disables SHA256 PCR (Platform Configuration Register) Bank.

Pending operation [None]

Schedule an Operation for the security device.

[None]: No operation.

[TPM Clear]: Clear TPM status.

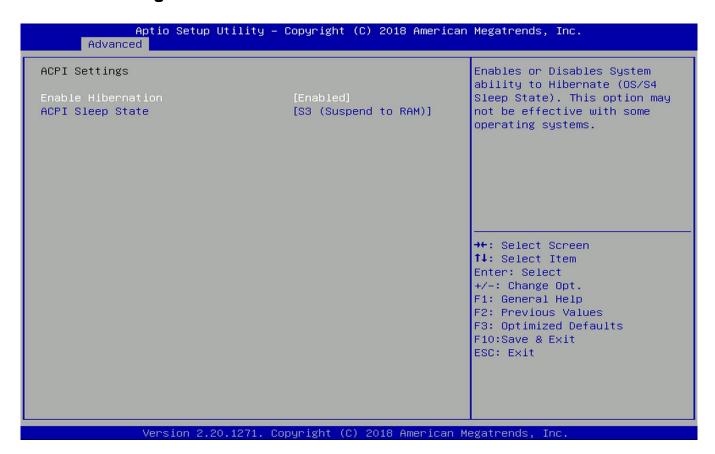
■ Platform Hierarchy [Enabled]

Enables or disables platform hierarchy.

Storage Hierarchy [Enabled]

Enables or disables storage hierarchy.

Endorsement Hierarchy [Enabled]


Enables or disables endorsement hierarchy.

Physical Presence Spec Version [1.3]

Select the physical presence spec version.

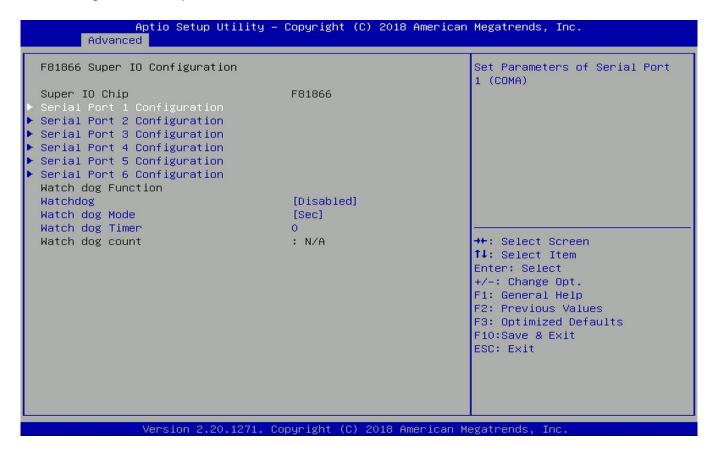
Configuration options: [1.2] [1.3]

4.3.5 ACPI Settings

■ Enable Hibernation [Enabled]

Enables or disables system ability to hibernate state (OS/S4 state). This option may not be effective with some OS.

■ ACPI Sleep State [S3 (Suspend to RAM)]


Allows users to select the highest Advanced Configuration Power Interface® (ACPI) sleep state that system will enter when suspend button is pressed.

[Suspend Disabled]: Disables entering suspend state.

[S3 (suspend to RAM)]: Enables suspend to RAM state.

4.3.6 F81866 Super IO Configuration

Set Parameters of Serial Ports. User can Enable/Disable the serial port and Select an optimal settings for the Super IO Device

■ Serial Port 1~6 Configuration.

82

Serial Port	[Enabled]
Enables or	diaablaa aar

Enables or disables serial port.

☐ Change Settings [Auto]

Allows you to change the IO Address & IRQ settings of the specified serial port.

☐ Onboard Serial Port 1~6 Mode [RS232]

Allows you to select Serial Port Mode.

Configuration options: [RS232] [RS422/RS485 Full Duplex] [RS485 Half Duplex]

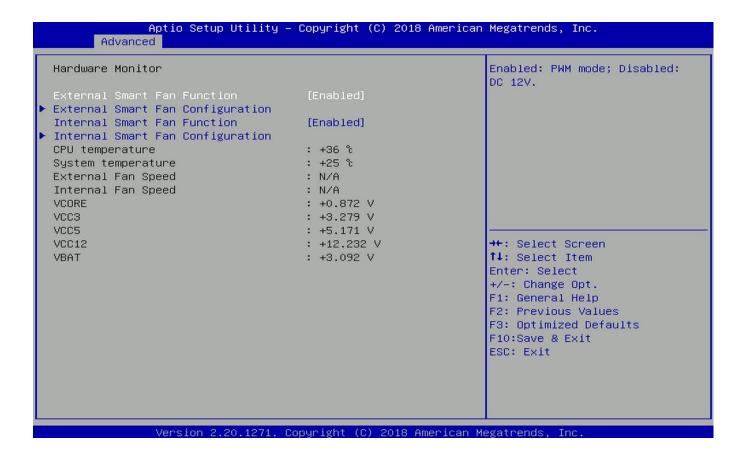
Watch Dog Function

You can setup the system watch-dog timer, a hardware timer that generates a reset when the software that it monitors does not respond as expected each time the watch dog polls it.

■ Watch Dog [Disabled]

Enables or disables watch dog function.

■ Watch Dog Mode [Sec]


Allows to set watchdog timer unit <Sec> or <Min>.

■ Watch Dog Timer [0]

Allows you to set watchdog timer's value in the range of 0 to 255.

4.3.7 Hardware Monitor

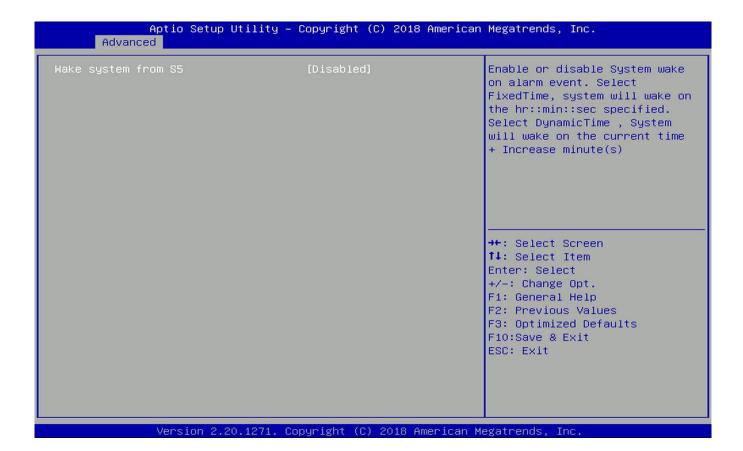
This screen displays the current status of all monitored hardware devices/components such as voltages, temperatures and all fans' speeds.

■ External Smart Fan Function [Enabled]

Enables or disables external smart fan function.

External Smart Fan Configuration

Allows users to setting external smart fan parameters.


Internal Smart Fan Function [Enabled]

Enables or disables internal smart fan function.

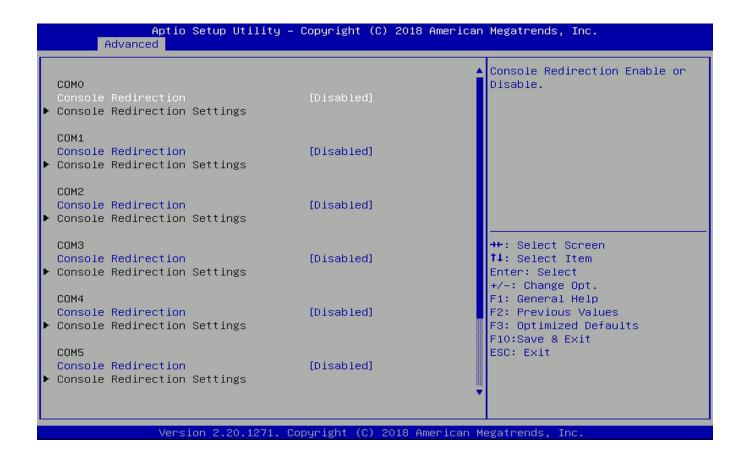
Internal Smart Fan Configuration

Allows users to setting internal smart fan parameters.

4.3.8 S5 RTC Wake Settings

■ Wake system from S5 [Disabled]

Enables or disables wake system from S5 (soft-off state).


[Disabled]: Disables wake system from S5.

[Fixed Time]: Sets a fixed time (HH:MM:SS) to wake system from S5.

[Dynamic Time]: Sets a increase minute(s) from current time to wake system from S5.

85

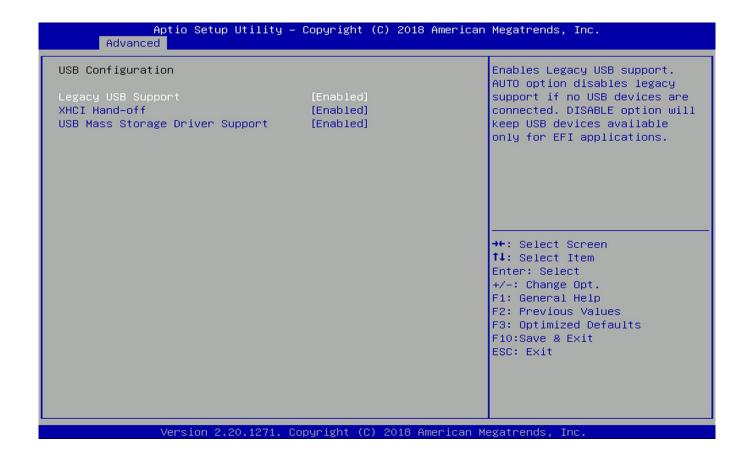
4.3.9 Serial Port Console Redirection

■ Console Redirection

Allow users to enable or disable COM0, COM1, COM2, COM3, COM4, COM5 console redirection function.

COM0 = Serial Port 1

COM1 = Serial Port 2


COM2 = Serial Port 3

COM3 = Serial Port 4

COM4 = Serial Port 5

COM5 = Serial Port 6

4.3.10 USB Configuration

■ Legacy USB Support [Enabled]

This item allows you to enable or disable legacy USB support. When set to [Auto], legacy USB support will be disabled automatically if no USB devices are connected.

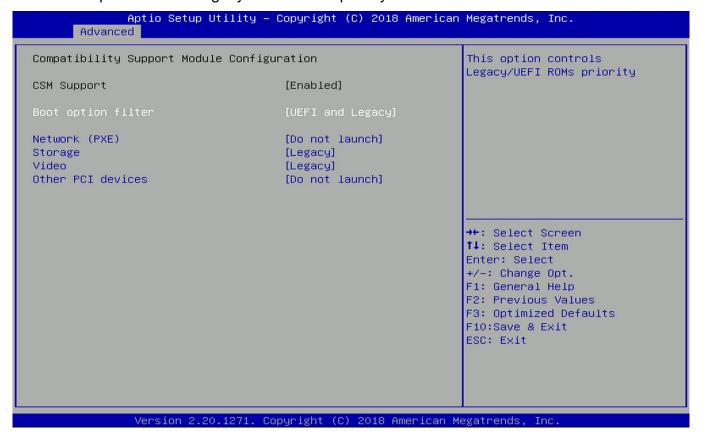
■ XHCI Hand-off [Enabled]

Enables or disables XHCI (USB3.0) hand-off function. Use this feature as a workaround for operating systems without XHCI hand-off support.

■ USB Mass Storage Driver Support [Enabled]

Enables or disables USB mass storage driver support.

4.3.11 Network Stack Configuration



■ Network Stack [Disabled]

Enables or disables UEFI Network Stack.

4.3.12 CSM Configuration

This option controls legacy/UEFI ROMs priority.

■ Boot option filter [UEFI and Legacy]

Allows you to select which type of operating system to boot.

[UEFI and Legacy]: Allows booting from operating systems that support legacy option ROM or UEFI option ROM.

[Legacy only]: Allows booting from operating systems that only support legacy option ROM. [UEFI only]: Allows booting from operating systems that only support UEFI option ROM.

■ Network PXE [Do not launch]

Controls the execution of UEFI and Legacy PXE (Network Preboot eXecution Environment) option ROM.

[Do not launch]: Disables option ROM execution.

[Legacy]: Enables legacy option ROM only.

Storage [Legacy]

Controls the execution of UEFI and Legacy Storage option ROM.

[Do not launch]: Disables option ROM execution.

[UEFI]: Enables UEFI option ROM only.

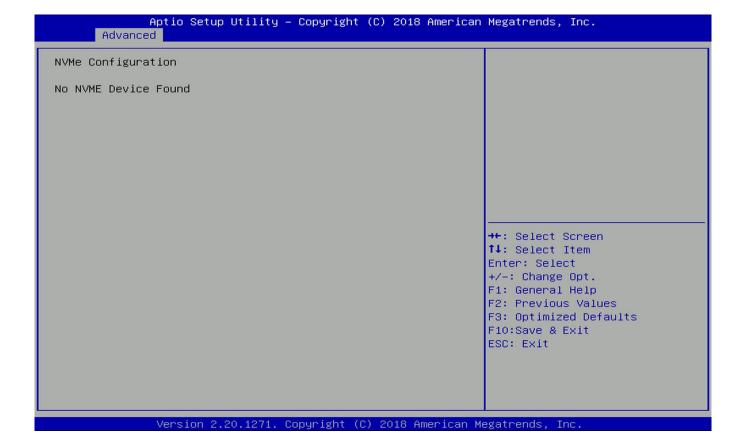
[Legacy]: Enables legacy option ROM only.

■ Video [Legacy]

Controls the execution of UEFI and Legacy Video option ROM.

[Do not launch]: Disables option ROM execution.

[UEFI]: Enables UEFI option ROM only.


[Legacy]: Enables legacy option ROM only.

■ Other PCI devices [Do not launch]

Allows users to determine option ROM execution policy for devise other than network, storage, or video.

4.3.13 NVMe Configuration

This screen displays the current NVMe device information.



4.4 Chipset Setup

This section allows you to configure chipset related settings according to user's preference.

4.4.1 System Agent (SA) Configuration

Memory Configuration

This item displays detailed memory configuration in the system.

■ Max TOLUD [Dynamic]

This feature sets the maximum TOLUD (Top of Low Usable DRAM) value, which specifies the TOLUD memory space to be used by internal graphics devices, GTT Stolen Memory, and TSEG, respectively, if these devices are enabled. Configuration options: [Dynamic] [1 GB] [1.25 GB] [1.5 GB] [1.75 GB] [2 GB] [2.25 GB]

[2.5 GB] [2.75 GB] [3 GB]

■ Graphics Configuration

☐ Primary Display [Auto]

Allows users to select which graphics device should be primary display or select SG for switchable graphics.

Configuration options: [Auto] [IGFX] [PEG] [PCIe]


☐ Internal Graphics [Auto]

Allows users to enable or disable Internal Graphics. Configuration options: [Auto] [Disabled] [Enabled]

■ VT-d [Enabled]

Enables or disables Intel® Virtualization Technology for Directed I/O (VT-d) capability.

4.4.2 PCH-IO Configuration

■ PCI Express Configuration

```
Aptio Setup Utility – Copyright (C) 2018 American Megatrends, Inc.
  PCI Express Configuration
                                                                   PCI Express Root Port Settings.
▶ PCI Express Root Port (mPCIe CN3)
 PCI Express Root Port (mPCIe CN4)
 PCI Express Root Port (mPCIe CN5)
                                       Lane configured as
                                       USB/SATA
                                                                   →+: Select Screen
                                                                   ↑↓: Select Item
                                                                   Enter: Select
                                                                   +/-: Change Opt.
                                                                   F1: General Help
                                                                   F2: Previous Values
                                                                   F3: Optimized Defaults
                                                                   F10:Save & Exit
                                                                   ESC: Exit
                Version 2.20.1271. Copyright (C) 2018 American Megatrends, Inc.
```

PCI Express Root Port (PCIe x1) □ PCI Express Root Port [Enabled] Enables or disables PCI Express Root Port.

□ PCle Speed [Auto]

Allows you to select PCI Express port speed. Configuration options: [Auto] [Gen1] [Gen2] [Gen3]

PCI Express Root Port (mPCle CN3)

□ PCI Express Root Port [Enabled]

Enables or disables PCI Express Root Port.

□ PCle Speed [Auto]

Allows you to select PCI Express port speed. Configuration options: [Auto] [Gen1] [Gen2] [Gen3]

PCI Express Root Port (mPCle CN4)

□ PCI Express Root Port [Enabled]

Enables or disables PCI Express Root Port.

□ PCle Speed [Auto]

Allows you to select PCI Express port speed. Configuration options: [Auto] [Gen1] [Gen2] [Gen3]

PCI Express Root Port (mPCle CN5)

□ PCI Express Root Port [Enabled]

Enables or disables PCI Express Root Port.

□ PCle Speed [Auto]

Allows you to select PCI Express port speed. Configuration options: [Auto] [Gen1] [Gen2] [Gen3]

■ LAN i219LM Controller [Enabled]

Enables or disables i219LM LAN Controller.

■ Wake on LAN (i219) [Enabled]

Enables or disables integrated LAN i219LM Wake On LAN function.

■ LAN i210AT Controller [Enabled]

Enables or disables i210AT LAN Controller.

■ Wake# event (PCle) [Enabled]

Enables or disables integrated LAN i210AT Wake On LAN function.

■ M.2 function Switch [PCle]

Select PCIe/SATA for M.2 connector.

■ CN3 mSATA Function Switch [Mini-PCle]

Allows you to change Mini PCle1 (CN3) as [Mini-PCle] or [mSATA].

■ CN3 USB3 Function Switch [Disabled]

Enables or disables CN3 USB3 Controller.

■ CN4 mSATA Function Switch [Mini-PCle]

Allows you to change Mini PCle1 (CN4) as [Mini-PCle] or [mSATA].

■ CN4 USB3 Function Switch [Disabled]

Enables or disables CN4 USB3 Controller.

■ CN5 mSATA Function Switch [Mini-PCle]

Allows you to change Mini PCle1 (CN5) as [Mini-PCle] or [mSATA].

■ CN5 USB3 Function Switch [Disabled]

Enables or disables CN5 USB3 Controller.

■ Amplifier Function [Enabled]

Enables or disables Amplifier Function.

■ Power Failure [Keep last state]

Allows you to specify which power state system will enter when power is resumed after a power failure (G3 state).

[Always on]: Enters to power on state.

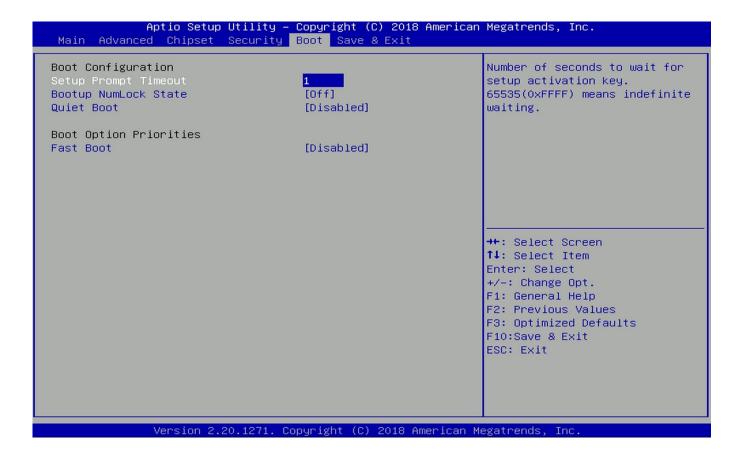
[Always off]: Enters to power off state.

[Keep last state]: Enters to the last power state before a power failure.

4.5 Security Setup

This section allows you to configure BIOS security settings.

Administrator Password


Allows you to set Administrator Password to control access to the BIOS Setup utility.

User Password

Allows you to set User Password to control access to the system at boot and to the BIOS Setup utility.

4.6 Boot Setup

This section allows you to configure Boot settings.

■ Setup Prompt Timeout [1]

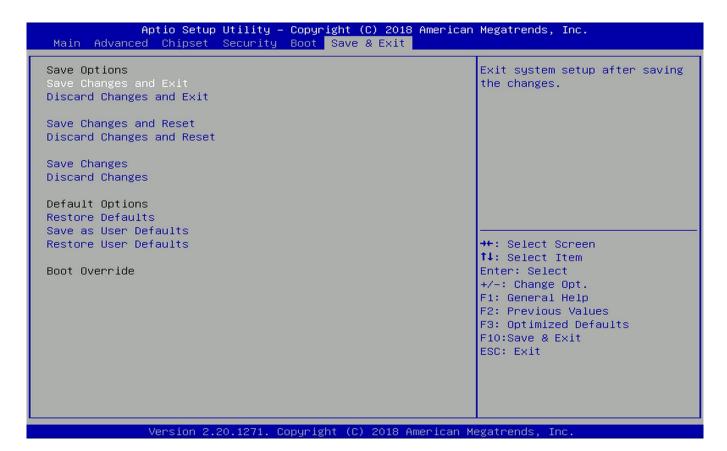
Use this item to set number of seconds (1..65535) to wait for setup activation key.

■ Bootup NumLock State

Allows you to set NumLock key to [On] or [Off] state when system boots up.

Quiet Boot

Allows you to enable or disable Quiet Boot function.


■ Fast Boot

Allows you to enable or disable Fast Boot function. If enabled, system boots with initialization of a minimal set of devices required to launch active boot option.

■ Hard Drive BBS Priority

Allows you to set the order of the legacy devices in this group.

4.7 Save & Exit

Save Changes and Exit

This item allows you to exit the system after saving changes.

■ Discard Changes and Exit

This item allows you to reset the system setup without saving any changes.

Save Changes and Reset

This item allows you to reset the system after saving changes.

Discard Changes and Reset

This item allows you to reset the system setup without saving any changes.

Save Changes

This item allows you to save changes done so far to any of the setup options.

Discard Changes

This item allows you to discard changes done so far to any of the setup options.

Restore Defaults

This item allows you to restore/ load default values for all the setup options.

Save as User Defaults

This item allows you to save the changes done so far as user defaults.

Restore User Defaults

This item allows you to restore the user defaults to all the setup options.

Chapter 5

Product Application

(For DIO only)

This chapter describes the DIO applications.

5.1 Digital I/O (DIO) Application

This section describes DIO application of the product. The content and application development are better understood and implemented by well experienced professionals or developers.

5.1.1 Digital I/O (DIO) Programming Guide

5.1.1.1 Pins for Digital I/O 1~8

Item	Standard	Item	Standard
GPIO70 (PIN 103)		GPIO80 (PIN 111)	
GPIO71 (PIN 104)		GPIO81 (PIN 112)	
GPIO72 (PIN 105)	DI	GPIO82 (PIN 113)	DO
GPIO73 (PIN 106)		GPIO83 (PIN 114)	
GPIO74 (PIN 107)		GPIO84 (PIN 115)	DO
GPIO75 (PIN 108)		GPIO85 (PIN 116)	
GPIO76 (PIN 109)		GPIO86 (PIN 117)	
GPIO77 (PIN 110)		GPIO87 (PIN 118)	

5.1.1.2 Pins for Digital I/O 9~16

Item	Standard	Item	Standard
GPIO30 (PIN 36)		GPIO40 (PIN 44)	
GPIO31 (PIN 37)	DI	GPIO41 (PIN 45)	
GPIO32 (PIN 38)		GPIO42 (PIN 46)	
GPIO33 (PIN 39)		GPIO43 (PIN 47)	DO
GPIO34 (PIN 40)	DI	GPIO44 (PIN 48)	DO
GPIO35 (PIN 41)		GPIO45 (PIN 49)	
GPIO36 (PIN 42)		GPIO46 (PIN 50)	
GPIO37 (PIN 43)		GPIO47 (PIN 51)	

5.1.1.3 Programming Guide

To program the F81866A configuration registers, the following configuration procedures must be followed in sequence:

- (1) Enter the Extended Function Mode
- (2) Configure the configuration registers
- (3) Exit the Extended Function Mode

The configuration register is used to control the behavior of the corresponding devices. To con-figure the register, using the index port to select the index and then writing data port to alter the parameters. The default index port and data port are 0x4E and 0x4F, respectively. To enable configuration, the entry key 0x87 must be written to the index port. To disable configuration, write exit entry key 0xAA to the index port. Following is an example to enable configuration and disable configuration by using debug.

- -o 4e 87
- -o 4e 87 (enable configuration)
- -o 4e aa (disable configuration)

5.1.1.4 Relative Registers

To program the F81866A configuration registers, the following configuration procedures.

Logic Device Number Register (LDN) - Index 07h

Bit	Name	R/W	Reset	Default	Description
7-0	LDN	R/W	LRESET#		00h: Select FDC device configuration registers. 03h: Select Parallel Port device configuration registers. 04h: Select Hardware Monitor device configuration registers. 05h: Select KBC device configuration registers. 06h: Select GPIO device configuration registers. 07h: Select WDT device configuration registers. 07h: Select PME, ACPI and ERP device configuration registers. 10h: Select UART1 device configuration registers. 11h: Select UART2 device configuration registers. 12h: Select UART3 device configuration registers. 13h: Select UART4 device configuration registers. 14h: Select UART5 device configuration registers. 15h: Select UART6 device configuration registers. Otherwise: Reserved.

8.7.13.1GPIO7 Output Enable Register — Index 80h

Bit	Name	R/W	Reset	Default	Description
7	7 GPIO77 OE RM	R/W	LRESET#	0	0: GPIO77 is in input mode.
·	01011_02		EREOL III	·	1: GPIO77 is in output mode.
6	GPIO76 OE	R/W	LRESET#	0	0: GPIO76 is in input mode.
U	01 1070_0L	1000	LKESE1#	0	1: GPIO75 is in output mode.
5	GPIO75 OE	R/W	LRESET#	0	0: GPIO75 is in input mode.
3	GFIO75_OL	I KVVV	LKESE1#	U	1: GPIO75 is in output mode.
	CDIO74 OF			0	0: GPIO74 is in input mode.
4	GPIO74_OE	R/W	LRESET#	U	1: GPIO74 is in output mode.
3	GPIO73 OE	R/W	Λ/	-т# О	0: GPIO73 is in input mode.
3	GP1073_0E	FC/VV	LRESET#	U	1: GPIO73 is in output mode.
2	CDIO72 OF	R/W	LRESET#	0	0: GPIO72 is in input mode.
	GPIO72_OE	F/VV	LRESE I#	U	1: GPIO72 is in output mode.
4	CDIO71 OF	DAM		0	0: GPIO71 is in input mode.
'	GPIO71_OE	R/W	V LRESET#	# 0	1: GPIO71 is in output mode.
0	0 001070 05	D.44/	V LRESET#	0	0: GPIO70 is in input mode.
0	GPIO70_OE	R/W		U	1: GPIO70 is in output mode.

8.7.13.3GPIO7 Pin Status Register — Index 82h (This byte could be also read by base address + 3)

Bit	Name	R/W	Reset	Default	Description
7	GPIO77_IN	R	-	-	The pin status of GPIO77/STB#.
6	GPIO76_IN	R	-	-	The pin status of GPIO76/AFD#.
5	GPIO75_IN	R	-	-	The pin status of GPIO75/ERR#.
4	GPIO74_IN	R	-	-	The pin status of GPIO74/INIT#.
3	GPIO73_IN	R	-	-	The pin status of GPIO73/SLIN#.
2	GPIO72_IN	R	-	-	The pin status of GPIO72/ACK#.
1	GPIO71_IN	R	-	-	The pin status of GPIO71/BUSY.
0	GPIO70_IN	R	1	-	The pin status of GPIO70/PE/FANCTL3/PWM_DAC3.

8.7.9.1 GPIO3 Output Enable Register — Index C0h

Bit	Name	R/W	Reset	Default	Description
7	GPIO37_OE	R/W	LRESET#	0	0: GPIO37 is input. 1: GPIO37 is output.
6	GPIO36_OE	R/W	LRESET#	0	0: GPIO36 is input. 1: GPIO36 is output.
5	GPIO35_OE	R/W	LRESET#	0	0: GPIO35 is input. 1: GPIO35 is output.
4	GPIO34_OE	R/W	LRESET#	0	0: GPIO34 is input. 1: GPIO34 is output.
3	GPIO33_OE	R/W	LRESET#	0	0: GPIO33 is input. 1: GPIO33 is output.
2	GPIO32_OE	R/W	LRESET#	0	0: GPIO32 is input. 1: GPIO32 is output.
1	GPIO31_OE	R/W	LRESET#	0	0: GPIO31 is input. 1: GPIO31 is output.
0	GPIO30_OE	R/W	LRESET#	0	0: GPIO30 is input. 1: GPIO30 is output.

8.7.9.3 GPIO3 Pin Status Register — Index C2h (This byte could be also read by base address + 9 if GPIO_DEC_RANGE is set to "1")

	<u> </u>								
Bit	Name	R/W	Reset	Default	Description				
7	GPIO37_IN	R	-	-	The pin status of SIN3/GPIO37.				
6	GPIO36_IN	R		-	The pin status of SOUT3/GPIO36.				
5	GPIO35_IN	R	-	-	The pin status of DSR3#/GPIO35.				
4	GPIO34_IN	R	•	-	The pin status of RTS3#/GPIO34.				
3	GPIO33_IN	R	-	-	The pin status of DTR3#/GPIO33.				
2	GPIO32_IN	R	•	-	The pin status of CTS3#/GPIO32.				
1	GPIO31_IN	R	•	-	The pin status of RI3#/GPIO31.				
0	GPIO30_IN	R	-	-	The pin status of DCD3#/GPIO30.				

8.7.14.1GPIO8 Output Enable Register — Index 88h

Bit	Name	R/W	Reset	Default	Description
7	GPIO87_OE	R/W	LRESET#	1	0: GPIO87 is in input mode. 1: GPIO87 is in output mode.
6	GPIO86_OE	R/W	LRESET#	1	0: GPIO86 is in input mode. 1: GPIO85 is in output mode.
5	GPIO85_OE	R/W	LRESET#	1	0: GPIO85 is in input mode. 1: GPIO85 is in output mode.
4	GPIO84_OE	R/W	LRESET#	1	0: GPIO84 is in input mode. 1: GPIO84 is in output mode.
3	GPIO83_OE	R/W	LRESET#	1	0: GPIO83 is in input mode. 1: GPIO83 is in output mode.
2	GPIO82_OE	R/W	LRESET#	1	0: GPIO82 is in input mode. 1: GPIO82 is in output mode.
1	GPIO81_OE	R/W	LRESET#	1	0: GPIO81 is in input mode. 1: GPIO81 is in output mode.
0	GPIO80_OE	R/W	LRESET#	1	0: GPIO80 is in input mode. 1: GPIO80 is in output mode.

8.7.14.2GPIO8 Output Data Register — Index 89h (This byte could be also written by base address + 2)

Bit	Name	R/W	Reset	Default	Description
7	GPIO87_VAL	R/W	LRESET#	1	0: GPIO87 outputs 0 when in output mode. 1: GPIO87 outputs 1 when in output mode.
6	GPIO86_VAL	R/W	LRESET#	1	0: GPIO86 outputs 0 when in output mode. 1: GPIO86 outputs 1 when in output mode.
5	GPIO85_VAL	R/W	LRESET#	1	0: GPIO85 outputs 0 when in output mode. 1: GPIO85 outputs 1 when in output mode.
4	GPIO84_VAL	R/W	LRESET#	1	0: GPIO84 outputs 0 when in output mode. 1: GPIO84 outputs 1 when in output mode.
3	GPIO83_VAL	R/W	LRESET#	1	0: GPIO83 outputs 0 when in output mode. 1: GPIO83 outputs 1 when in output mode.
2	GPIO82_VAL	R/W	LRESET#	1	0: GPIO82 outputs 0 when in output mode. 1: GPIO82 outputs 1 when in output mode.
1	GPIO81_VAL	R/W	LRESET#	1	0: GPIO81 outputs 0 when in output mode. 1: GPIO81 outputs 1 when in output mode.
0	GPIO80_VAL	R/W	LRESET#	1	0: GPIO80 outputs 0 when in output mode. 1: GPIO80 outputs 1 when in output mode.

8.7.10.1GPIO4 Output Enable Register — Index B0h

Bit	Name	R/W	Reset	Default	Description
7	7 CDIO47 OF D	DAM	LRESET#	1	0: GPIO47 is input.
,	GPIO47_OE	FK/VV	LKESE I#	'	1: GPIO47 is output.
6	GPIO46 OE	DAM.	LRESET#	1	0: GPIO46 is input.
0	GF1040_OE	FK/VV	LKESE1#	'	1: GPIO46 is output.
5	GPIO45 OE	DAA/	LRESET#	1	0: GPIO45 is input.
3	GF1043_OL	FK/VV	LKESE I#	'	1: GPIO45 is output.
4	GPIO44 OE	DAM.	LRESET#	1	0: GPIO44 is input.
-4	GF1044_OL	FC/VV	LRESE I#		1: GPIO44 is output.
3	GPIO43 OE	DAM.	LRESET#	1	0: GPIO43 is input.
3	OI 1043_OL	17///	LKLSL1#	'	1: GPIO43 is output.
2	GPIO42 OE	DAA/	LRESET#	1	0: GPIO42 is input.
	01 1042_0L	IVVV	LKLSL1#	'	1: GPIO42 is output.
1	GPIO41 OE	DAM.	LRESET#	1	0: GPIO41 is input.
	0F1041_0L	IX/VV	V LRESEI#	'	1: GPIO41 is output.
0	0 GPIO40 OE RM	DAM.	LRESET#	1	0: GPIO40 is input.
J	01 1040_OL	IVVV	LKLSE1#	1	1: GPIO40 is output.

8.7.10.2GPIO4 Output Data Register — Index B1h (This byte could be also written by base address + 10 if GPIO_DEC_RANGE is set to "1")

Bit	Name	R/W	Reset	Default	Description
7	GPIO47 DATA	R/W	LRESET#	1	0: GPIO47 outputs 0 when in output mode.
,	GFIO47_DAIA	FK/VV	LRESE I#	'	1: GPIO47 outputs 1 when in output mode.
6	CDIO46 DATA	R/W	LRESET#	1	0: GPIO46 outputs 0 when in output mode.
0	GPIO46_DATA	FK/VV	LRESE I#	'	1: GPIO46 outputs 1 when in output mode.
5	GPIO45 DATA	R/W	LRESET#	1	0: GPIO45 outputs 0 when in output mode.
5	GPIO45_DATA	H/VV	LRESE I#	'	1: GPIO45 outputs 1 when in output mode.
4	GPIO44 DATA	R/W	LRESET#	1	0: GPIO44 outputs 0 when in output mode.
4	GFIO44_DAIA	FK/VV	LRESE I#		1: GPIO44 outputs 1 when in output mode.
3	GPIO43 DATA	R/W	LRESET#	1	0: GPIO43 outputs 0 when in output mode.
3	GFIO43_DAIA	FX/VV	LRESE I#	'	1: GPIO43 outputs 1 when in output mode.
2	GPIO42 DATA	R/W	LRESET#	1	0: GPIO42 outputs 0 when in output mode.
	GFIO42_DATA	IK/VV	LRESE I#	'	1: GPIO42 outputs 1 when in output mode.
1	GPIO41 DATA	R/W	LRESET#	1	0: GPIO41 outputs 0 when in output mode.
<u>'</u>	GFIO41_DATA	FX/VV	LKESE I#	'	1: GPIO41 outputs 1 when in output mode.
0	GPIO40 DATA	R/W	LRESET#	1	0: GPIO40 outputs 0 when in output mode.
U	GFIO40_DAIA	FV/VV	LRESEI#	'	1: GPIO40 outputs 1 when in output mode.

8.7.3Base Address High Register — Index 60h

Bit	Name	R/W	Reset	Default	Description
7-0	GP_BASE_ADDR_HI	R/W	LRESET#	00h	The MSB of GPIO I/O port address.

8.7.3.4Base Address Low Register — Index 61h

Bit	Name	R/W	Reset	Default	Description
7-0	BASE_ADDR_LO	R/W	LRESET#	00h	The LSB of KBC data port address. When GPIO_DEC_RANGE is "0", only 8 bytes are decoded: Base + 0: index port. Base + 1: data port. Base + 2: GPIO8 data register. Base + 3: GPIO7 data register. Base + 4: GPIO6 data register. Base + 5: GPIO5 data register. Base + 6: GPIO0 data register. Base + 7: GPIO1 data register. If GPIO_DEC_RANGE is set to "1", more 8 bytes are decoded: Base + 8: GPIO2 data register. Base + 9: GPIO3 data register. Base + 10: GPIO4 data register. Otherwise: Reserved. There are three ways to access the GPIO registers. 1. Use configuration register port 0x4E/0x4F (or 0x2E/0x2F), the LDN for GPIO is 0x06. 2. Use GPIO index/data port. Write index to index port first and then read/write the register. 3. Use digital I/O port. The way only access GPIO data register. Write data to this port will control the data output register. And read this port will read the pin status register.

5.1.1.5 Sample Code in C Language

#define AddrPort 0x4E

WriteByte(AddrPort, 0xAA)

5.1.1.5.1 Control of GP70 to GP77 (DI1 ~ DI8)

```
#define DataPort 0x4F
<Enter the Extended Function Mode>
WriteByte(AddrPort, 0x87)
WriteByte(AddrPort, 0x87)
                              // Must write twice to entering Extended mode
<Select Logic Device>
WriteByte(AddrPort, 0x07)
WriteByte(dataPort, 0x06)
                              // Select logic device 06h
<Input Mode Selection>
                              // Set GP70 to GP77 input Mode
WriteByte(AddrPort, 0x80)
                              // Select configuration register 80h
                              // Set (bit 0\sim7) = 0 to select GP 70\sim77 as Input mode
WriteByte(DataPort, 0x0X)
<input Value>
WriteByte(AddrPort, 0x82)
                              // Select configuration register 82h
                              // Read bit 0 \sim 7(0xFx) = GP70 \sim 77 as High
ReadByte(DataPort, Value)
<Leave the Extended Function Mode>
WriteByte(AddrPort, 0xAA)
```

5.1.1.5.2 Control of GP80 to GP87 (DO1 ~ DO8)

```
#define AddrPort 0x4E
#define DataPort 0x4F
<Enter the Extended Function Mode>
WriteByte(AddrPort, 0x87)
WriteByte(AddrPort, 0x87)
                              // Must write twice to entering Extended mode
<Select Logic Device>
WriteByte(AddrPort, 0x07)
WriteByte(DataPort, 0x06)
                              // Select logic device 06h
<Output Mode Selection>
                              // Set GP80 to GP87 output Mode
                              // Select configuration register 88h
WriteByte(AddrPort, 0x88)
WriteByte(DataPort, (0xXF))
                              // Set (bit 0\sim7) = 1 to select GP 80\sim87 as Output mode
<Output Value>
WriteByte(AddrPort, 0x89)
                              // Select configuration register 89h
                              // Set bit 0\sim7=(0/1) to output GP 80\sim87 as Low or High
WriteByte(DataPort, Value)
<Leave the Extended Function Mode>
```

5.1.1.5.3 Control of GP70 to GP77 & GP30 to GP37 (DI1 ~ DI16)

#define AddrPort 0x4E

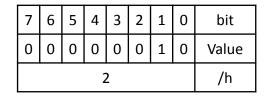
#define DataPort 0x4F <Enter the Extended Function Mode> WriteByte(AddrPort, 0x87) WriteByte(AddrPort, 0x87) // Must write twice to entering Extended mode <Select Logic Device> WriteByte(AddrPort, 0x07) WriteByte(dataPort, 0x06) // Select logic device 06h // Set GP70 to GP77 input Mode <Input Mode Selection> // Select configuration register 80h WriteByte(AddrPort, 0x80) WriteByte(DataPort, 0x0X) // Set (bit $0\sim7$) = 0 to select GP $70\sim77$ as Input mode <Input Mode Selection> // Set GP30 to GP37 input Mode WriteByte(AddrPort, 0xC0 // Select configuration register C0h WriteByte(DataPort, 0x0X) // Set (bit $0\sim7$) = 0 to select GP $30\sim37$ as Input mode <input Value> WriteByte(AddrPort, 0x82) // Select configuration register 82h ReadByte(DataPort, Value) // Read bit $0 \sim 7(0xFx) = GP70 \sim 77$ as High <input Value> WriteByte(AddrPort, 0xC2) // Select configuration register C2h ReadByte(DataPort, Value) // Read bit $0 \sim 7(0xFx) = GP30 \sim 37$ as High <Leave the Extended Function Mode> WriteByte(AddrPort, 0xAA)

5.1.1.5.4 Control of GP80 to GP87 & GP40 to GP47 (DO1 ~ DO16)

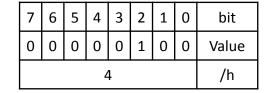
#define DataPort 0x4F <Enter the Extended Function Mode> WriteByte(AddrPort, 0x87) WriteByte(AddrPort, 0x87) // Must write twice to entering Extended mode <Select Logic Device> WriteByte(AddrPort, 0x07) WriteByte(DataPort, 0x06) // Select logic device 06h <Output Mode Selection> // Set GP80 to GP87 output Mode // Select configuration register 88h WriteByte(AddrPort, 0x88) WriteByte(DataPort, (0xXF)) // Set (bit $0\sim7$) = 1 to select GP $80\sim87$ as Output mode <Output Mode Selection> // Set GP40 to GP47 output Mode WriteByte(AddrPort, 0xB0) // Select configuration register B0h WriteByte(DataPort, (0xXF)) // Set (bit $0\sim7$) = 1 to select GP $40\sim47$ as Output mode <Output Value> WriteByte(AddrPort, 0x89) // Select configuration register 89h WriteByte(DataPort, Value) // Set bit $0\sim7=(0/1)$ to output GP 80 ~87 as Low or High <Output Value> // Select configuration register B1h WriteByte(AddrPort, 0xB1) // Set bit $0\sim7=(0/1)$ to output GP $40\sim47$ as Low or High WriteByte(DataPort, Value) <Leave the Extended Function Mode> WriteByte(AddrPort, 0xAA)

5.1.1.5 Change base address

#define AddrPort 0x4E


```
<Enter the Extended Function Mode>
WriteByte(AddrPort, 0x87)
WriteByte(AddrPort, 0x87)
                              // Must write twice to entering Extended mode
<Select Logic Device>
WriteByte(AddrPort, 0x07)
WriteByte(dataPort, 0x06)
                              // Select logic device 06h
                              // Select configuration register 60h (High Byte address)
WriteByte(AddrPort, 0x60)
WriteByte(DataPort, (0x0A))
WriteByte(AddrPort, 0x61)
                              // Select configuration register 61h (Low Byte address)
WriteByte(DataPort, (0x00))
<Leave the Extended Function Mode>
WriteByte(AddrPort, 0xAA)
```

Cincoze default DIO Port base address is set to 0x0A00h


5.1.1.5 DATA Bit Table (DIO)

7	6	5	4	3	2	1	0	bit
0	0	0	0	0	0	0	1	Value
		/h						

= DI1 (Base address + 3) (0xA03)

= D12(Base address + 3) (0xA03)

= DI3(Base address + 3) (0xA03)

7	6	5	4	3	2	1	0	bit
0	0	0	0	1	0	0	0	Value
		/h						

(Base address + 3) (0xA03)

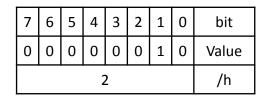
7	6	5	4	3	2	1	0	bit
0	0	0	1	0	0	0	0	Value
		/h						

(Base address + 3) (0xA03)

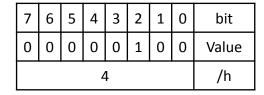
7	6	5	4	3	2	1	0	bit
0	0	1	0	0	0	0	0	Value
		/h						

(Base address + 3) (0xA03)

7	6	5	4	3	2	1	0	bit
0	1	0	0	0	0	0	0	Value
		/h						


= DI7 (Base address + 3) (0xA03)

7	6	5	4	3	2	1	0	bit
1	0	0	0	0	0	0	0	Value
		/h						


= D18(Base address + 3) (0xA03)

7	6	5	4	3	2	1	0	bit
0	0	0	0	0	0	0	1	Value
		/h						

= DO1 (Base address + 2) (0xA02)

= DO2 (Base address + 2) (0xA02)

= DO3 (Base address + 2) (0xA02)

7	6	5	4	3	2	1	0	bit
0	0	0	0	1	0	0	0	Value
		/h						

(Base address + 2) (0xA02)

7	6	5	4	3	2	1	0	bit
0	0	0	1	0	0	0	0	Value
		/h						

(Base address + 2) (0xA02)

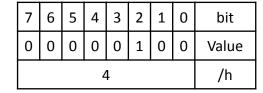
	7	6	5	4	3	2	1	0	bit
	0	0	1	0	0	0	0	0	Value
I	20								/h

(Base address + 2) (0xA02)

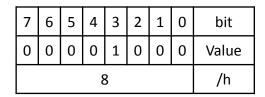
7	6	5	4	3	2	1	0	bit
0	1	0	0	0	0	0	0	Value
		/h						


= DO7 (Base address + 2) (0xA02)

7	6	5	4	3	2	1	0	bit
1	0	0	0	0	0	0	0	Value
		/h						


= DO8 (Base address + 2) (0xA02)

7	6	5	4	3	2	1	0	bit
0	0	0	0	0	0	0	1	Value
		/h						


= DI9 (Base address +9) (0xA09)

= DI10(Base address +9) (0xA09)

= DI11(Base address +9) (0xA09)

= DI12(Base address +9) (0xA09)

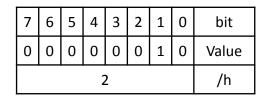
7	6	5	4	3	2	1	0	bit
0	0	0	1	0	0	0	0	Value
		/h						

(Base address +9) (0xA09)

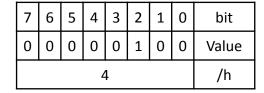
7	6	5	4	3	2	1	0	bit
0	0	1	0	0	0	0	0	Value
		/h						

= DI14(Base address +9) (0xA09)

7	6	5	4	3	2	1	0	bit
0	1	0	0	0	0	0	0	Value
		/h						

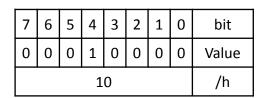

= DI15 (Base address +9) (0xA09)

7	6	5	4	3	2	1	0	bit
1	0	0	0	0	0	0	0	Value
		/h						


= DI16 (Base address +9) (0xA09)

7	6	5	4	3	2	1	0	bit
0	0	0	0	0	0	0	1	Value
		/h						

= DO9 (Base address +10) (0xA10)


= DO10(Base address +10) (0xA10)

= DO11 (Base address +10) (0xA10)

7	6	5	4	3	2	1	0	bit
0	0	0	0	1	0	0	0	Value
		/h						

(Base address +10) (0xA10)

= DO13(Base address +10) (0xA10)

	7	6	5	4	3	2	1	0	bit
	0	0	1	0	0	0	0	0	Value
Ī			/h						

(Base address +10) (0xA10)

	7	6	5	4	3	2	1	0	bit
	0	1	0	0	0	0	0	0	Value
Ī			/h						

= DO15 (Base address +10) (0xA10)

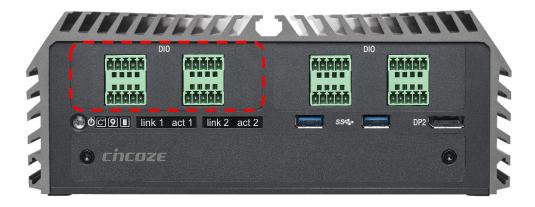
7	6	5	4	3	2	1	0	bit
1	0	0	0	0	0	0	0	Value
		/h						

= DO16 (Base address +10) (0xA10)

5.1.1.6 DIO I/O Port Address (Default Address 0xA00)

Pin Definition	DI8	DI7	DI6	DI5	DI4	DI3	DI2	DI1
Data Bits	7	6	5	4	3	2	1	0
DIO	Digital Input							
I/O Port Address	ss 0xA03							

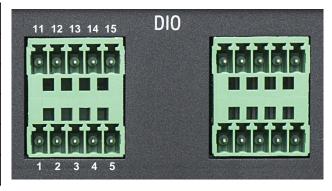
Pin Definition	DO8	D07	DO6	DO5	DO4	DO3	DO2	DO1
Data Bits	7	6	5	4	3	2	1	0
DIO	Digital Output							
I/O Port Address	0xA02							


Pin Definition	DI16	DI15	DI14	DI13	DI12	DI11	DI10	DI9
Data Bits	7	6	5	4	3	2	1	0
DIO	Digital Input							
I/O Port Address	0xA09							

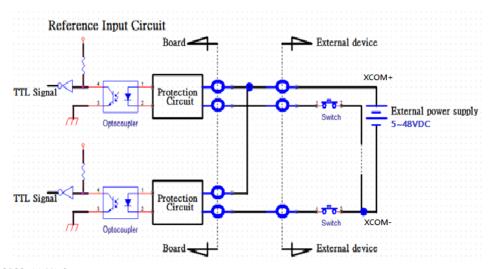
Pin Definition	DO16	DO15	DO14	DO13	DO12	DO11	DO10	DO9
Data Bits	7	6	5	4	3	2	1	0
DIO	Digital Output							
I/O Port Address	0xA010							

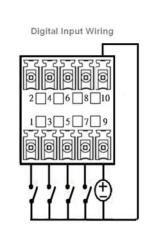
5.2 Digital I/O (DIO) Hardware Specification

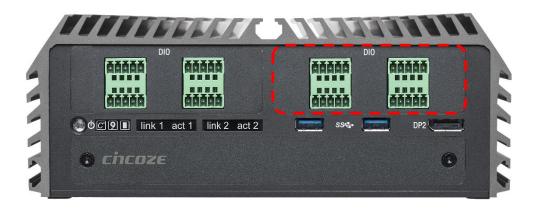
- XCOM+ / 2XCOM+ : Isolated power in V+
- XCOM- / 2XCOM- : Isolated power in V-
- Isolated power in DC voltage: 5~48V
- 8x / 16x Digital Input (Source Type)
- · Input Signal Voltage Level
 - Signal Logic 0 : XCOM+ = 5V, Signal Low V- < 0.4V XCOM+ > 5V, V+ - Signal Low > 4.6V
 - Signal Logic 1 : > XCOM+ 3V
- Input Driving Sink Current :
 - Minimal: 1 mA
 - Normal: 5 mA
- 8x / 16x Digital Output (Open Drain)
 - DO Signal have to pull up resistor to XCOM+ for external device, the resistance will affect the pull up current
 - Signal High Level: Pull up resistor to XCOM+
 - Signal Low Level : = XCOM-
 - Sink Current: 1A (Max)


5.2.1 Digital I/O DIO Connector Definitions

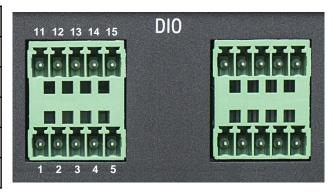

DIO1: Digital Input / Output Connector

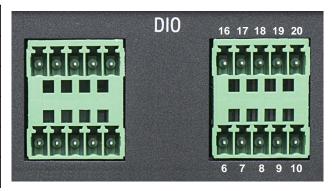

Connector Type: Terminal Block 2X5 10-pin, 3.5mm pitch

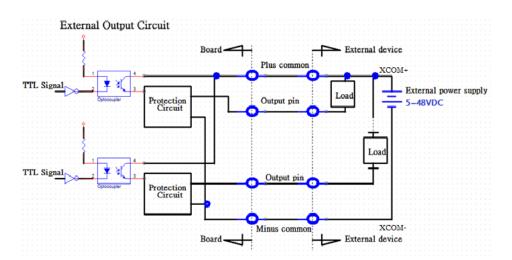

Pin	Definition	Pin	Definition
1	DI1	11	DO1
2	DI2	12	DO2
3	DI3	13	DO3
4	DI4	14	DO4
5	XCOM+	15	XCOM-

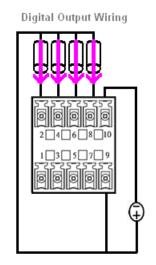


Pin	Definition	Pin	Definition
6	DI5	16	DO5
7	DI6	17	DO6
8	DI7	18	DO7
9	DI8	19	DO8
10	2XCOM+	20	2XCOM-




DIO2: Digital Input / Output Connector


Connector Type: Terminal Block 2X5 10-pin, 3.5mm pitch


Pin	Definition	Pin	Definition
1	DI1 (DI9)	11	DO1 (DO9)
2	DI2 (DI10)	12	DO2 (DO10)
3	DI3 (DI11)	13	DO3 (DO11)
4	DI4 (DI12)	14	DO4 (DO12)
5	XCOM+	15	XCOM-

Pin	Definition	Pin	Definition
6	DI5 (DI13)	16	DO5 (DO13)
7	DI6 (DI14)	17	DO6 (DO14)
8	DI7 (DI15)	18	DO7 (DO15)
9	DI8 (DI16)	19	DO8 (DO16)
10	2XCOM+	20	2XCOM-

Chapter 6

Optional Module Pin Definitions and Settings

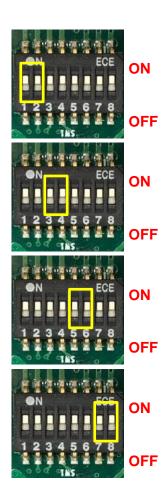
6.1 CMI-COM Module Connector Definition and Settings

Model No.	Description
CMI-COM02/UB1004	CMI Module with 4x RS232/422/485 Serial Ports, 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series
CMI-ICOM01/UB1004	CMI Module with 4x Electrical Isolated RS-232/422/485 Serial Ports, 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series

COM3_4_1 / COM5_6_1 : RS232 / RS422 / RS485 Connector

Connector Type: 9-pin D-Sub

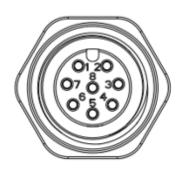
	COM3 / COM4 / COM5 / COM6							
DB9 Pin	RS232 Definition	RS422 / 485 Full Duplex Definition	RS485 Half Duplex Definition					
1	DCD	TX-	DATA-					
2	RXD	TX+	DATA+					
3	TXD	RX+						
4	DTR	RX-						
5	GND							
6	DSR							
7	RTS							
8	CTS							
9	RI							



Note: COM3/4/5/6 are isolated COM, each pin5 (GND) is independent.

COM3 / 4 / 5 / 6 Voltage Function Setting : Pin Define SW1 Switch

Dip	Function		Definition			
		0V(RI)	ON/ON (Default)			
1-2	СОМЗ	5V	ON/OFF			
		12V	OFF/OFF			
		0V(RI)	ON/ON (Default)			
3-4	COM4	5V	ON/OFF			
						12V
	COM5	0V(RI)	ON/ON (Default)			
5-6		5V	ON/OFF			
		12V	OFF/OFF			
		0V(RI)	ON/ON (Default)			
7-8	СОМ6	5V	ON/OFF			
		12V	OFF/OFF			



6.2 CMI-M12 Module Connector Definition and Settings

Model No.	Description
CMI-M12LAN01/UB1010	CMI Module with M12 Connector, 4x Intel GbE LAN, 1x Universal Bracket with 4x M12 Cutout for DS-1200 Series

CMI-M12LAN01 Connector

CMI-M12 LAN Module Pin Definitions Connector Type: M12 A coded 8pin connector

Definition Definition Pin Pin 1 2_LAN1_0+ 2 2_LAN1_0-3 2_LAN1_1+ 2_LAN1_1-4 5 2_LAN1_2+ 6 2_LAN1_2-7 2_LAN1_3+ 2_LAN1_3-8

6.3 CFM-IGN Module Connector Definition and Settings

Model No.	Description
CFM-IGN101	CFM Module with Power Ignition Sensing Control Function, 12V/24V Voltage Detection Selectable

SW2: IGN Function Switch

Set shutdown delay timer when ACC is turned off

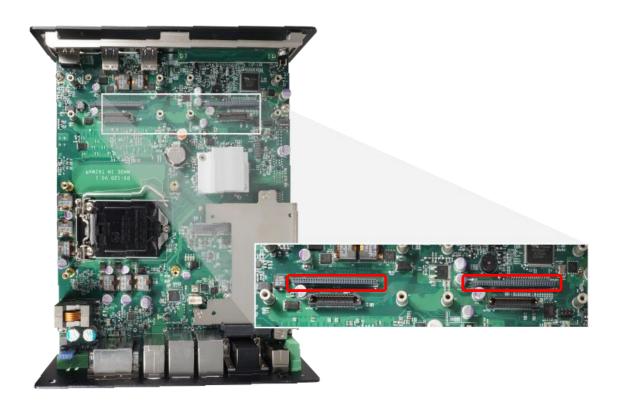
Pin 1	Pin 2	Pin 3	Pin 4	Definition
	ON	ON	ON	0 second
	ON	ON	OFF	1 minute
	ON	OFF	ON	5 minutes
OFF	ON	OFF	OFF	10 minutes
ON	OFF	ON	ON	30 minutes
	OFF	ON	OFF	1 hour
	OFF	OFF	ON	2 hours
	OFF	OFF	OFF	Reserved (0 second)

24V_12V_1: 12V / 24V Car Battery Switch

Pin	Definition
1-2 (Right)	24V Car Battery Input
2-3 (Left)	12V Car Battery Input

6.4 Installing a Low Speed CMI Module

The applicable low speed CMI modules for DS1200 series are listed in the following table.


Model No.	Description	
CMI-COM02/UB1004	CMI Module with 4x RS232/422/485 Serial Ports, 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series	
CMI-ICOM01/UB1004	CMI Module with 4x Electrical Isolated RS-232/422/485 Serial Ports, 1x Universal Bracket with 4x DB9 Cutout for DS-1200 Series	
CMI-DIO02/UB1018	CMI Module with 16x Optical Isolated DIO (8 in/8 out), 1x Universal Bracket with DIO Cutout for DS-1200 Series	

Note: The photo example used in this section is illustrated CMI-ICOM01/UB1004module.

1. Loosen the 2 hex nuts from back side of front bezel. Remove the front bezel.

2. Locate the connector of CMI-module on top side of system.

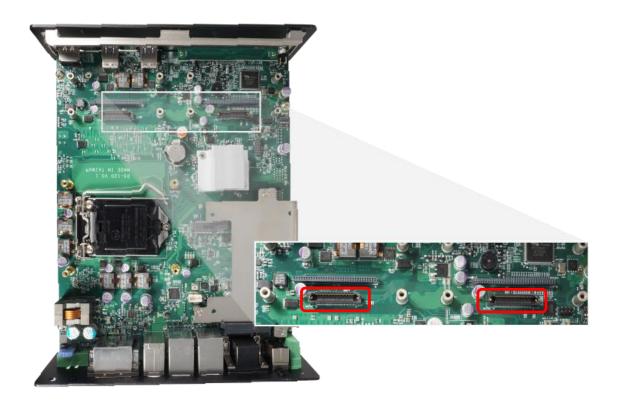
3. Insert the CMI module carefully into the CMI connector on main board. Fix it with 2 screws.

4. Fasten the 2 hex nuts from the back side of front bezel.

5. Fasten the 8 D-Sub jack screws as marked on photo.

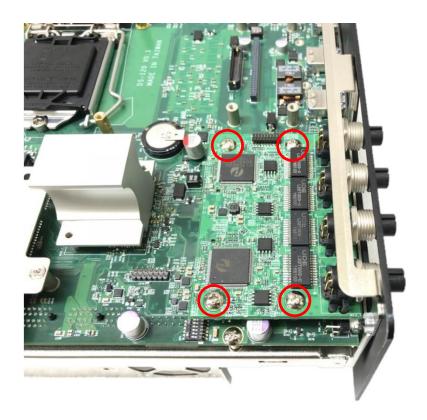
6.5 Installing a High Speed CMI Module

The applicable high speed CMI modules for DS1200 series are listed in the following table.


Model No.	Description	
CMI-LAN01/UB1012	CMI Module with 4x Intel I210-AT GbE LAN, RJ45 Port, 1x Universal Bracket with 4x RJ45 Cutout for DS-1200 Series	
CMI-M12LAN01/UB1010	CMI Module with M12 Connector, 4x Intel GbE LAN, 1x Universal Bracket with 4x M12 Cutout for DS-1200 Series	

Note: The photo example in this section is illustrated by CMI-M12LAN01/UB1010 module.

1. Loosen the 2 hex nuts from back side of front bezel. Remove the front bezel.


2. Locate the connector of CMI module on top side of system.

3. Remove the 4 ring nuts from M12 jack before attempting to install the module.

4. Insert the CMI module vertically into the female connector on system's mainboard until it's connected firmly and fasten 4 screws to fix it.

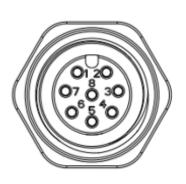
4. Attach the M12 I/O bracket.

5. Fasten 2 hex nuts from the back side of the bracket.

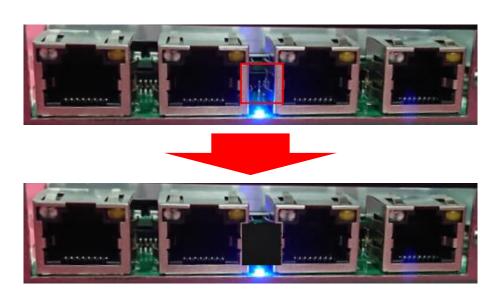
6. Fasten the 4 ring nuts onto M12 jacks.

6.6 Installing a CFM-PoE Module

The applicable high speed CMI modules for DS1200 series are listed in the following table.


Model No.	Description	
CFM-PoE03	PoE Control Function Module, Power Boost 44-57V	

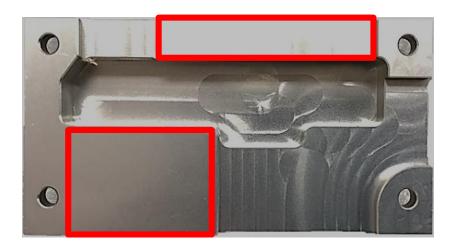
CMI-M12 PoE Module Pin Definitions

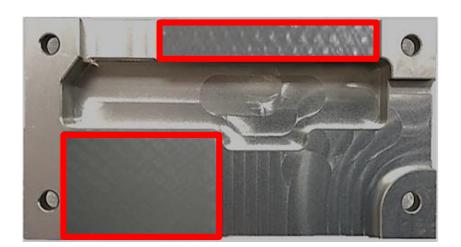

Connector Type: M12 A coded 8pin connector POE type: Midspan

Please note that the M12 Pin Definitions will change as the following table when the CFM-PoE module is inserted onto the CMI-M12LAN01 Module.

Pin	Definition	Pin	Definition
1	2_LAN1_0+	2	2_LAN1_0-
3	2_LAN1_1+	4	2_LAN1_2+(Power PIN)
5	2_LAN1_2-(Power PIN)	6	2_LAN1_1-
7	2_LAN1_3+(Power PIN)	8	2_LAN1_3-(Power PIN)

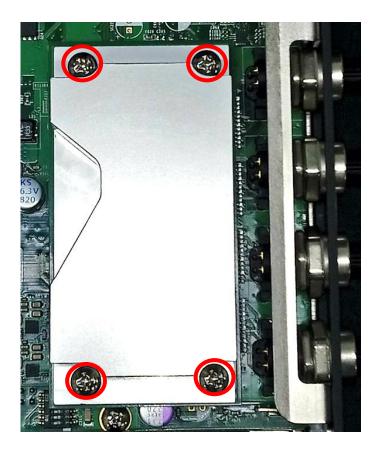
If you use CMI-RJ45LAN Module (CMI-LAN01), please paste the shading tape to the place which was marked by red frame. If you use CMI-M12LAN01 Module please skip this step. (Note: Please don't block the LED.)


1. Insert the CMI module vertically into the female connector on system's mainboard until it's connected firmly and fasten 4 copper pillars to fix it.


2. Insert the CFM-PoE module vertically into the female connector on CMI module until it's connected firmly.

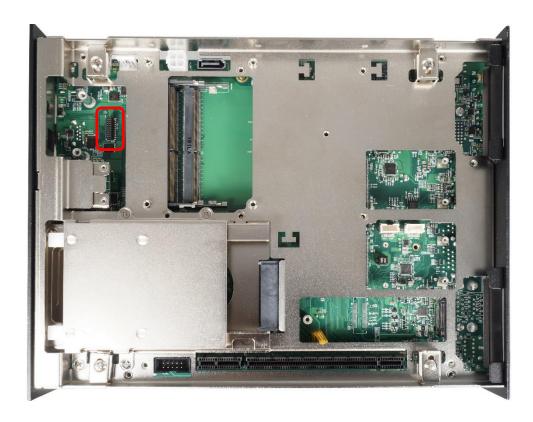
3. Turn over the heatsink and locate the two places which were marked by red circles.

4. Please paste the 2 thermal pads onto the heatsink carefully.


5. Please paste the 1 thermal pad onto the coil of the CFM-PoE module carefully.

6. Please paste the heatsink onto the CFM-PoE module carefully.

7. Fasten 4 screws to fix it.



6. Please paste the thermal pad onto the heatsink carefully.

6.7 Installing a CFM-IGN Power Ignition Module

1. Locate power ignition connector on main board.

2. Insert the power ignition module carefully into the connector on main board. Fasten 2 screws to fix it.

6.8 Install an External Fan

Model No.	Description
FAN-EX101	External Fan with 4pin Terminal Block Plug, Mounting Bracket. Support Smart Fan Function

1. Prepare an external fan. Loosen the 2 screws halfway on mounting frame before attempting to install it.

2. Slide the FAN into the middle groove of chassis as illustrated. Tighten the 2 screws to fix it onto chassis.

3. Move the fan to the center of chassis. Tighten the 2 screws marked on photo to secure it.

4. Connect the FAN cable to external fan power connector at rear panel.

6.9 Installing an Internal FAN (For DS-1202 only)

Model No.	Description	
FAN-UB100	Exhaling Fan with 4pin Connector, Universal Bracket	
FAN-UB101	Inhaling Fan with 4pin Connector, Universal Bracket	

1. Unscrew 6 screws to remove 3 I/O brackets from rear panel.

2. Attach the FAN from back side of rear panel. Fasten 4 screws to fix it.

3. Connect the FAN power cable to the power connector on main board.as marked on photo.

www.cincoze.com

© 2014 Cincoze Co., Ltd. All rights reserved.

The Cincoze logo is a registered trademark of Cincoze Co., Ltd.

All other logos appearing in this catalog are the intellectual property of the respective company, product, or organization associated with the logo.

All product specifications and information are subject to change without notice.